首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linear alkylbenzene sulfonates (LAS) have been determined in samples of the influent and the effluent, and in the sludge, from sewage-treatment plants (STP). LAS and sulfophenyl carboxylate compounds (SPC) were isolated by solid-phase extraction (SPE) with the polymeric phase Isolute ENV, then determined by liquid chromatography-electrospray mass spectrometry (LC-ESI-MS). The method enabled unequivocal identification of C10-C13 LAS by monitoring the ion at m/z 183 and the base peak corresponding to the [M-H]- ion. Average recoveries varied from 77-93% and the linear range of the method varied from 0.2 to 10 microg L(-1), with a limit of detection ranging from 10 ng L(-1) to 1.5 microg L(-1) when 200 mL waste water were preconcentrated. For sewage sludge, recoveries varied from 58 to 90% and the linear range was between 0.2 and 100 microg L(-1), with a detection limit ranging from 0.4 to 120 microg kg(-1) when 2.5 g sewage sludge was extracted. Unequivocal identification and determination of some metabolites of the LAS, the sulfophenyl carboxylate compounds (SPC), was achieved by monitoring [M-H]- ions.  相似文献   

2.
A rapid, sensitive and selective method has been developed and validated for the analysis of the contaminant ethyl carbamate (EC) in bread products at the part-per-billion level. The new procedure uses positive ion chemical ionisation (PICI) and tandem mass spectrometry (MS/MS), combined with gas chromatography (GC), on a 'bench-top' triple-quadrupole mass spectrometer. Ammonia was the PICI reagent gas of choice because of its ability to produce abundant [M+H]+ and [M+NH4]+ ions from EC and deuterium-labelled EC (LEC) used as an internal standard. For identification and quantification, selected reaction monitoring (SRM) was used to follow the precursor-to-product ion transitions of m/z 107 --> 90, m/z 107 --> 62 and m/z 90 --> 62 for EC, as well as m/z 112 --> 63 for the LEC internal standard. The limits of detection and quantification were 0.6 and 1.2 microg kg(-1), respectively, and the recovery of the method was 101 +/- 10% at 10 microg kg(-1) and 98 +/- 5% at 100 microg kg(-1). The precision of the method, established under conditions of intermediate reproducibility, did not exceed a relative standard deviation of 7%. The quantitative performance of the new GC/PICI-SRM procedure compared favourably with that of a reference method based on GC/MS and selected ion monitoring (correlation coefficient, r = 0.997). However, the new method had the advantages of reduced sample preparation time, improved sensitivity and unambiguous identification of EC at all concentrations. Application of the new method to the analysis of 50 UK breads showed that levels of EC ranged from 0.6 to 2.3 microg kg(-1) in retail products and from 3.1 to 12.2 microg kg(-1) for breads prepared using domestic breadmaking machines (dry weight basis). Toasting bread in a domestic toaster led to increases of between two- and three-fold in mean EC concentrations.  相似文献   

3.
A new confirmatory method for three macrolides (tylosin, tilmicosin and erythromycin) in bovine muscle, liver and kidney by micro-LC-MS-MS using an atmospheric pressure ionisation source and an ionspray interface has been developed. Roxithromycin was used as internal standard. The molecular related ions, [M+2H]2+, at m/z 435 for tilmicosin, and [M+H]+, at m/z 734 and 916 for erythromycin and tylosin, respectively, were the precursor ions for collision-induced-dissociation and two diagnostic product ions for each macrolide were identified for the unambiguous confirmation by selected reaction monitoring LC-MS-MS. Precision values (relative standard deviations) were all below 14.9%, whereas the overall accuracy (relative error) ranged from -17.7 to -9.8% for tylosin, from -17.5 to -10.7% for tilmicosin and from -19.6 to -13.7% for erythromycin, in all the investigated bovine tissues. The limits of quantification were 30 (muscle) or 40 (liver, kidney) microg kg(-1), 20 (muscle) or 150 (liver, kidney) microg kg(-1), 50 (muscle, liver) or 80 (kidney) microg kg(-1), 20 (muscle, liver) or 50 (kidney) microg kg(-1) for tylosin, tilmicosin, erytromycin and roxithromycin, respectively.  相似文献   

4.
A method for the comprehensive profiling of intact glucosinolates (GLSs), major and minor, occurring in leaves and seeds of rocket salad (Eruca sativa L.) is presented using optimized reversed-phase liquid chromatography (RP-LC) with electrospray ionization (ESI) ion trap mass spectrometry (ITMS). ESI-ITMS in the negative mode was confirmed to be very suitable to analyze these compounds in crude extracts. After extraction from the plant material with methanol/water (70:30 v/v) at 70 degrees C, the analytes of interest were separated on a C18 column using an eluent acidified with formic acid (0.1%) and modified with acetonitrile. All the GLSs found in leaves of rocket salad gave good signals corresponding to the deprotonated precursor ion, [M-H]-. Although the mass spectra also exhibited an analytically important non-covalent adduct ion at [2M-H]-, the structures of glucosinolates were confirmed by extensive sequential MS analysis, thereby substantially improving the identification of unknown compounds. The results obtained not only revealed in leaves of E. sativa at least twelve species of GLSs including seven aliphatic compounds (glucoraphanin with [M-H]- at m/z ratio of 436, glucoerucin at m/z 420, 4-mercaptobutyl-GLS at m/z 406, progoitrin/epiprogoitrin at m/z 388, sinigrin at m/z 358, 4-methylpentyl- and n-hexyl-GLS at m/z 402) and three indole glucosinolates (i.e., three N-heterocyclic compounds: 4-hydroxyglucobrassicin and 5-hydroxyglucobrassicin at m/z 463, and 4-methoxy-glucobrassicin at m/z 477), but also two structurally related compounds containing one intermolecular disulfide linkage (4-(beta-D-glucopyranosyldisulfanyl)butyl-GLS at m/z 600 and a dimeric 4-mercaptobutyl-GLS at m/z 811). This latter symmetric disulfide was previously considered as an artefact formed during extraction of GLSs from vegetative tissues. Glucosinolates were detected in the leaves with a wide range of contents (10-200 micromol/g) and a great variation in the composition. Only three GLSs were identified in seeds of rocket salad, namely glucoraphanin, glucoerucin and 4-methoxyglucobrassicin. As expected, the most abundant GLS in seeds is glucoerucin. The feasibility of the strategy was also demonstrated using a rapeseed extract of certified reference material (BCR367R). The results indicated the usefulness of this method for a rapid, sensitive and comprehensive profiling of the GLS family naturally occurring in extracts of crude plant matter.  相似文献   

5.
A method is described for the identification and quantitative determination of 3,5-dinitrosalicylic acid hydrazide (DSH), the marker residue of nifursol metabolites in poultry (turkey, broiler) muscle and liver tissue. The method is based on the acid-catalysed hydrolysis of tissue-bound metabolites to free DSH and in situ derivatisation with 2-nitrobenzaldehyde to the corresponding nitrophenyl derivative NPDSH. A structural analogue of DSH, 4-hydroxy-3,5-dinitrobenzoic acid hydrazide (HBH) was synthesised to serve as an internal standard. The analytes were isolated from the matrix by liquid-liquid extraction with ethyl acetate. Determination was performed by LC-MS/MS with negative electrospray ionisation. The [M - H](+) ions of NPDSH and NPHBH at m/z 374 were fragmented by collision induced dissociation (CID) producing transition ions at m/z 182, 183 and 226. The transition ions at m/z 182 and 226 were selected for monitoring of NPDSH while the transition ion at m/z 183 was selected for NPHBH. The method has been validated according to the EU criteria of Commission Decision 2002/657/EC at 0.5, 1.0 and 1.5 microg kg(-1) in muscle and liver tissue. A decision limit (CC(alpha)) was obtained of 0.04 and 0.025 microg kg(-1) in muscle and liver, respectively. Similarly a detection capability (CC(beta)) was obtained of 0.10 and 0.05 microg kg(-1) in muscle and liver, respectively. The introduction of HBH as an internal standard did not lead to a significant improvement of the quantitative performance of the method. In fact for liver better performance characteristics were obtained when the IS was not taken into account. Nevertheless, as a qualitative marker for recovery, HBH could still be very useful in the analysis of unknown samples.  相似文献   

6.
During a dietary intervention study on 16 renal transplanted patients, in which 25 g/day of animal proteins were replaced with 25 g of soy proteins, the metabolic profile of soy isoflavones in serum was characterized. This paper describes a reliable and fast liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) method, in negative ion mode, allowing the characterization and simultaneous quantification of several soy isoflavone metabolites. Six metabolites were identified and quantified: daidzein ([M-H](-) at m/z 252.8), dihydrodaidzein (DHD, [M-H](-) at m/z 254.8), equol ([M-H](-) at m/z 240.9), O-desmethylangolensin (O-DMA, [M-H](-) at m/z 256.8), genistein ([M-H](-) at m/z 268.8), and dihydrogenistein (DHG, ([M-H(+)](-) at m/z 270.8). Quantification was assessed using two deuterated internal standards, D(3)-daidzein and D(4)-genistein. This method permitted a limit of quantification (LOQ, S/N = 10) and a limit of detection (LOD, S/N = 3) of 0.05 microM and 0.005 microM for all analytes, except for genistein, where the LOQ and LOD were 0.005 microM and 0.001 microM, respectively. The linearity ranges were from 0.005 to 1.5 microM for genistein, from 0.05 to 1.5 microM for DHG, and from 0.05 to 0.7 microM for the other metabolites. The relative standard deviations (RSDs) were between 0.19% and 13.9% at the LOQ concentration for all metabolites, and between 0.6% and 4.8% at the maximum concentration. On the basis of the results obtained in the dietary intervention study, it was possible to split the patients into five groups characterized by different metabolic pathways.  相似文献   

7.
A simple and sensitive method was developed for the simultaneous quantification of harpagoside and cinnamic acid in rat plasma using high-performance liquid chromatography system coupled to a negative ion electrospray mass spectrometric analysis. The plasma sample preparation was a simple deproteinization by the addition of two volumes of acetonitrile. The analytes were separated on an Intersil C8-3 column (2.1 mm i.d.x250 mm, 5 microm) with acetonitrile-5 mm ammonium formate aqueous solution (60:40, v/v) as mobile phase at a flow-rate of 0.2 mL/min. Detection was performed on a quadrupole mass spectrometer equipped with electrospray ionization (ESI) source operated under selected ion monitoring (SIM) mode. [M+HCOO]- at m/z 539 for harpagoside, [M-H]- at m/z 147 for cinnamic acid and [M-H]- at m/z 137 for salylic acid (internal standard) were selected as detecting ions, respectively. The method was validated over the concentration range 7-250 ng/mL for harpagoside and 5-500 ng/mL for cinnamic acid. The lower limits of quantitation for harpagoside and cinnamic acid were 7 and 5 ng/mL, respectively. The intra- and inter-day precisions (RSD%) were within 9.5% and the assay accuracies (RE%) ranged from -5.3 to 3.0% for both analytes. Their average recoveries were greater than 86%. Both analytes were proved to be stable during all sample storage, preparation and analysis procedures. The method was successfully applied to the pharmacokinetic study of harpagoside and cinnamic acid following oral administration of Radix Scrophulariae extract to rats.  相似文献   

8.
A multiresidue analytical method was developed for the confirmation of benzylpenicillin (PCG), phenoxymethylpenicillin (PCV), oxacillin (MPIPC), cloxacillin (MCIPC), nafcillin (NFPC) and dicloxacillin (MDIPC) in bovine tissues using electrospray ionization liquid chromatography-tandem mass spectrometry (LC-ESI-MS-MS) with a product ion scan mode. All penicillins gave [M-H]-, [M-H-CO2]- and [M-H-141]- as the product ion, when [M-H]- was selected as the precursor ion. Combination of an ion-exchange cartridge clean-up and the LC-ESI-MS-MS method can reliably identify all of these penicillins fortified at a concentration of 0.05 mg/kg in bovine tissues, including liver, kidney and muscle. The limits of confirmation satisfy the maximum residue limits for each of the penicillins established by the World Health Organization, US Food and Drug Administration, European Union and Japan.  相似文献   

9.
Benzo[a]pyrene diol epoxide (BPDE) was reacted in vitro with (2'-deoxy)nucleotides and with calf thymus DNA. The modified DNA was enzymatically hydrolyzed to the 5'-monophosphate nucleotides using deoxyribonuclease I (DNA-ase I), nuclease P1 and snake venom phosphodiesterase (SVP). Most of the unmodified nucleotides were removed using solid phase extraction (SPE) in a polystyrene divinylbenzene copolymer. Three adducts could be detected and identified using capillary zone electrophoresis(negative)-ion electrospray ionization-mass spectrometry (CZE-(-)-ESI-MS) in conjunction with sample stacking. This way, not only a BPDE-dGMP adduct [(M-H)(-) at m/z 648], a well-known nucleotide adduct, could be retrieved, but also a BPDE-dAMP [(M-H)(-) at m/z 632] and a BPDE-dCMP adduct [(M-H)(-) at m/z 608] could be detected for the first time. The presence of the prominent ion at m/z 195 (the deoxyribose-phosphate ion) in the three low-energy collision-activated decomposition (CAD) spectra indicated that the adducts were formed through base-alkylation. CZE-positive ion ESI-MS/MS experiments were performed to obtain further information on base-alkylation. The absence of the loss of NH(3) from the nucleobase in each CAD spectrum points to an alkylated exocyclic NH(2) position of the nucleobase. So, the three adducts could be identified as BPDE-N(2)-dGMP, BPDE-N(6)-dAMP and BPDE-N(4)-dCMP using CZE-ESI-MS and CZE-ESI-MS/MS.  相似文献   

10.
Ginsenosides containing different numbers of glycosyl groups can be easily differentiated based on the formation of characteristic ginsenoside-acetate adduct anions and deprotonated ginsenosides generated by electrospray ionization (ESI) of methanolic solutions of ginsenosides (M) and ammonium acetate (NH4OAc). Ginsenosides containing two glycosyl groups gave a characteristic mass spectral pattern consisting of [M+2OAc]2-, [M-H+OAc]2- and [M-2H]2- ions with m/z values differing by 30 Th, while this mass spectral pattern was not observed for ginsenosides containing one glycosyl group. Formation of [M+2OAc]2- was influenced by the chain length of glycosyl groups and was used to differentiate the ginsenosides containing different combinations of monosaccharide and disaccharide units in the glycosyl groups. Under identical collisional activation conditions, [M+OAc]-, [M-H+OAc]2- and [M+2OAc]2- underwent proton abstractions predominantly to generate [M-H]-, [M-2H]2- and [M-H+OAc]2- ions, respectively. The ion intensity ratios, I[M-H](-/I) [M+OAc]-, I[M-2H](2-/I) [M-H+2OAc]2- and I[M-H+OAc](2-/I) [M+OAc]2-, being sensitive to the structural differences of ginsenosides, could differentiate the isomeric ginsenosides, including (i) Rf, F11 and Rg1, (ii) Rd and Re, and (iii) Rb2 and Rc. Additionally, NH4OAc was found to enhance the sensitivity of detection of ginsenosides in the form of [M-H]- down to the femtomole level.  相似文献   

11.
A method is described using LC-MS for the detection of the mycotoxins fusaproliferin (FUS) and beauvericin (BEA) in cultures of Fusarium subglutinans and in naturally contaminated maize. Protonated molecular ion signals for FUS and BEA were observed at m/z 445 and m/z 784, respectively. Collision induced dissociation of the readily dehydrated protonated molecular ion of the sesterterpene FUS (m/z 427) led to the loss of another water molecule (m/z 409) and acetic acid (m/z 385), while the cyclic lactone trimer BEA fragmented to yield the protonated dimer (m/z 523) and monomer (m/z 262), respectively. Detection of FUS was best performed in the MS-MS mode while BEA displayed a stronger signal in the MS mode. The on-column instrumental detection limits for pure FUS and BEA were found to be 2 ng and 20 pg (S/N=2) while those in naturally contaminated maize were 1 microg/kg and 0.5 microg/kg, respectively. Five South African strains of F. subglutinans were analyzed following methanol extraction of which four produced FUS at levels between 330 mg/kg and 2630 mg/kg while only three produced BEA at levels between 140 mg/kg and 700 mg/kg. Application of this method to naturally contaminated maize samples from the Transkei region of South Africa showed FUS at levels of 8.8-39.6 microg/kg and BEA at 7.6-238.8 microg/kg.  相似文献   

12.
A multiresidue analytical method was developed for the quantification of benzylpenicillin (PCG), phenoxymethylpenicillin (PCV), oxacillin (MPIPC), cloxacillin (MCIPC), nafcillin (NFPC) and dicloxacillin (MDIPC) in bovine tissues using liquid chromatography- electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) with a multiple reaction monitoring technique. Using the deuterated PCG and NFPC as internal standard was effective for improvement of repeatability and accuracy. We chose [M-H-141]- as a monitor ion of MRM analysis and [M-H]- as a precursor ion for each penicillin. Combination of an ion-exchange cartridge clean-up and ion-pair LC enable us to determine the residual penicillins using the standard curves made from standard solutions without the influence of sample matrix on the MS. The average recoveries of PCG, PCV, MPIPC, MCIPC, NFPC and MDIPC from bovine liver, kidney and muscle at the same concentrations as the tolerance levels of PCG (50 microg/kg) ranged from 77 to 101% with the coefficients of variation ranging from 0.7 to 4.2% (n = 5). The limits of quantification for the six penicillins were 2-10 microg/kg in bovine muscle, liver and kidney (S/N ratio >10).  相似文献   

13.
建立了气相色谱-负离子化学电离源质谱同时测定动物组织中氯霉素(CAP)、甲砜霉素(TAP)和氟甲砜霉素(FF)残留量的方法。样品用乙酸乙酯提取,正己烷分配去脂肪,再用Florisil柱进一步净化,甲苯作为反应介质,用N,O-双(三甲基硅基)三氟乙酰胺(BSTFA)-三甲基氯硅烷(TMCS)(体积比为99∶1)进行硅烷化处理,用间硝基氯霉素(m-CAP)作为内标进行测定。CAP的检测限可达到0.03 μg/kg,TAP和FF的检测限可达到0.2 μg/kg;上述3种药物的标准曲线的线性相关系数均大于0.99。CAP,FF和TAP的批内测定的精密度(以相对标准偏差表示)依次为5.5%,10.4%和8.8%;批间测定的精密度依次为7.4%,20.7%和19.1%。回收率为80.0%~111.5%,相对标准偏差为1.2%~15.4%。该方法前处理步骤简单,处理后杂质干扰少,灵敏度高,适用性强,可用于猪肉及禽类、水产品等多种动物组织中氯霉素类药物残留的检测。  相似文献   

14.
A method is described for the quantitative determination of quinoxaline-2-carboxylic acid (QCA), the marker residue for the veterinary drug carbadox, in swine liver. Tissue is subjected to alkaline hydrolysis followed by liquid-liquid extraction. QCA residues are cleaned up using automated solid phase extraction (SPE), before a final liquid-liquid extraction step. Analysis is based on LC coupled to positive ion electrospray MS-MS, monitoring product ions at m/z 129, 102 and 75 for QCA and at m/z 106 for the internal standard (d4-QCA). The method has been validated according to draft revised EU criteria for analysis of veterinary drug residues, and is suitable for monitoring tissues taken under national surveillance schemes. The method has been validated at 3, 10, 30, 100 and 300 microg kg(-1). The method performance characteristics, CCalpha (decision limit) and CCbeta (detection limit) were determined to be 0.16 and 0.27 microg kg(-1), respectively. The described method, which is relatively rapid and applicable to large sample numbers, correlates well (r2 = 0.9799) with a widely used GC-MS assay for QCA.  相似文献   

15.
4,4'-Dinitrocarbanilide (DNC) was extracted from chicken, duck, goose, and snake eggs and isolated by reversed-phase liquid chromatography. DNC was detected by ultraviolet absorbance at 347 nm and quantitated by comparison with a calibration standard. Recoveries of DNC from fortified control chicken, duck, goose, and snake egg samples were determined for DNC levels of 0.16, 10, and 16 microg/g. The mean recoveries from chicken, duck, goose, and snake eggs were 92 +/- 4, 88 +/- 9, 87 +/- 7, and 95 +/- 6%, respectively. The method limits of detection for DNC in chicken, duck, goose, and snake eggs ranged from 0.015 to 0.035 microg/g. The reported method is much simpler than and equally efficient as previous methods developed for the determination of DNC residues in egg contents.  相似文献   

16.
A simple, sensitive and rapid liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) method was developed and validated for the quantification of valproic acid, an antiepileptic drug, in human plasma using benzoic acid as internal standard (IS). Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the single ion monitoring mode using the respective [M-H]- ions, m/z 143 for valproic acid and m/z 121 for the IS. The assay exhibited a linear dynamic range of 0.5-60 microg/mL for valproic acid in human plasma. The lower limit of quantification was 500 ng/mL with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of valproic acid and the IS from spiked plasma samples were 96.1+/-4.2 and 95.6+/-2.7%, respectively. A run time of 4.5 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability and bioequivalence studies.  相似文献   

17.
Yessotoxins are a group of large polyether toxins, produced by marine dinoflagellates, which cause widespread contamination of filter-feeding shellfish. A new, sensitive liquid chromatography-mass spectrometry (LC-MS) method has been developed for the determination of yessotoxin (YTX) and 45-hydroxy-yessotoxin (45-OHYTX), a major metabolite in shellfish. The LC system was coupled, via an electrospray ionisation (ESI) source, to an ion-trap MS in negative mode. The molecular related ion species at m/z 1141 [M-2Na+H]- was used as the parent ion for multiple MS experiments. MS-MS and MS3 gave major fragment ions at m/z 1061 [1141-SO3H]- and m/z 945 [1061-C9H12O]-. Predominant ions, that are due to the fragmentation of the backbone structure of YTXs, were observed at the MS4 stage. Reversed-phase LC using a C16 amide column was preferable to C18 phases for the separation of YTX and 45-OHYTX. Optimum calibration and reproducibility data were obtained for YTX using LC-MS-MS; r 2=0.9960, RSD < or = 6.3% at 0.25 microg YTX/g (n=5). The detection limit (S/N=3) was 30 pg YTX on-column which corresponded to 3 ng/g shellfish tissue.  相似文献   

18.
By use of time and energy-resolved mass spectrometry, negative ions with masses ranging from m/z = 1-287 amu have been observed in the afterglow of a low-pressure (10 mTorr) pulsed acrylic acid polymerizing plasma. The most intense peaks, seen at m/z = 71, 143, 215, and 287, are assigned to the dehydrogenated oligomer of the form [nM-H](-) for n = 1, 2, 3, and 4, respectively. The results strongly suggest that both m/z = 71 and 143 ions are produced in the on period of the pulse cycle (0.1 ms duration), with higher masses m/z = 215 and 287 being produced by neutral ion chemistry in the off period (up to 40 ms in duration). The increase in the intensity of the [3M-H](-) and [4M-H](-) peaks in the off period is accompanied by a rapid fall in the concentration of [M-H]- ions and electrons, the latter decreasing from approximately 10(15) m(-3) to zero within 150 micros. Deep into the afterglow, Langmuir probe measurements show that the charge species only consist of positive and negative ions, present at equal concentrations in excess of approximately 10(14) m(-3) even after 10 ms that is, the plasma is wholly electron free. To describe the growth of large negative ions a number of possible ion-neutral chemical pathways have been postulated, and a calculation of the ambipolar diffusion rates to the walls suggests that, in the off period, the positive and negative ion contribution to the deposition rate is small ( approximately 1%) compared to the net total deposition rate. However, the observations do indicate that it may be necessary to update models of film growth in the pulsed plasma polymerization of acrylic acid to account for negative ions.  相似文献   

19.
A confirmatory method based on isotope dilution liquid chromatography-electrospray ionization tandem mass spectrometry is described for the determination of the antibiotic chloramphenicol (CAP) in foods. The method is quantitative and entails liquid-liquid extraction followed by a clean-up step on a silica gel solid-phase extraction cartridge. Mass spectral acquisition is done in the negative ion mode applying multiple reaction monitoring of two diagnostic transition reactions for CAP (m/z 321 --> 257 and m/z 321--> 152). In addition, the presence of two chlorine atoms in the CAP molecule provides further analyte certainty by assessing the 37Cl/35Cl ratio using the transition reactions m/z 323 --> 257 and m/z 323 --> 152. Validation of the method in chicken meat is conducted according to the latest European Union criteria for the analysis of veterinary drug residues at levels of 0.05, 0.10, and 0.20 microg/kg, employing [2H5]-chloramphenicol as internal standard. The decision limit and the detection capability were calculated at 0.01 microg/kg and 0.02 microg/kg, respectively. At the lowest fortification level (i.e. 0.05 microg/kg), precision values below 14 and 17% were achieved under repeatability and within-laboratory reproducibility conditions, respectively. The accuracy of the method was within 20, 15, and 5% of the target values at the 0.05, 0.10, and 0.20 microg/kg fortification levels, respectively. The applicability of this procedure was demonstrated by the analysis of other meat (turkey, pork, beef) and seafood (fish, shrimps) products. The method is robust and suitable for routine quality control operations, and more than 200 sample injections were performed without excessive pollution of the mass spectrometer or loss of LC column performance.  相似文献   

20.
The ion observed at m/z 145 when product ion spectra of iodobenzoate anions are recorded using ion-trap mass spectrometers corresponds to the adduct ion [I(H(2)O)](-). The elements of water required for the formation of this adduct do not originate from the precursor ion but from traces of moisture present in the helium buffer gas. A collision-induced decomposition (CID) spectrum recorded from the [M-H](-) ion (m/z 251) derived from 3-iodo[2,4,5,6-(2)H(4)]benzoic acid also showed an ion at m/z 145. This observation confirmed that the m/z 145 is not a product ion resulting from a direct neutral loss from the carboxylate anion. (79)Bromobenzoate anions produce similar results showing an ion at m/z 97 for [(79)Br(H(2)O)](-). The ion-molecule reaction observed here is unique to ion-trap mass spectrometers since a corresponding ion was not observed under our experimental conditions in spectra recorded with in-space tandem mass spectrometers such as triple quadrupole or quadrupole time-of-flight instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号