首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the title compound [systematic name: bis(adamantan‐1‐aminium) tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supramolecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan‐1‐aminium cation and one crown ether molecule (1,4,7,10,13,16‐hexaoxacyclooctadecane) to give an overall [(C10H18N)(18‐crown‐6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown‐ether O atoms through N—H...O hydrogen bonds. The 18‐crown‐6 ring adopts a pseudo‐C3v conformation. The second adamantan‐1‐aminium forms part of ribbons of adamantan‐1‐aminium–water–tetrachloridozincate units which are interconnected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.  相似文献   

2.
Tetraaqua(18‐crown‐6)cerium(III) hexacyanoferrate(III) dihydrate, [Ce(C12H24O6)(H2O)4][Fe(CN)6]·2H2O, and tetraaqua(18‐crown‐6)neodymium(III) hexacyanoferrate(III) dihydrate, [Nd(C12H24O6)(H2O)4][Fe(CN)6]·2H2O, are isomorphous and isostructural in the C2/c space group, where the cations, which contain ten‐coordinate lanthanoid centres, lie across twofold rotation axes and the anions lie across inversion centres. In these compounds, an extensive series of O—H...O and O—H...N hydrogen bonds links the components into a continuous three‐dimensional framework. Triaqua(18‐crown‐6)lanthanoid(III) hexacyanoferrate(III) dihydrate, [Ln(C12H24O6)(H2O)3][Fe(CN)6]·2H2O, where Ln = Sm, Eu, Gd or Tb, are all isomorphous and isostructural in the P space group, as are triaqua(18‐crown‐6)gadolinium(III) hexacyanochromate(III) dihydrate, [Gd(C12H24O6)(H2O)3][Cr(CN)6]·2H2O, and triaqua(18‐crown‐6)gadolinium(III) hexacyanocobaltate(III) dihydrate, [Gd(C12H24O6)(H2O)3][Co(CN)6]·2H2O. In these compounds, there are two independent anions, both lying across inversion centres, and the lanthanoid centres exhibit nine‐coordination; in the crystal structures, an extensive series of hydrogen bonds links the components into a three‐dimensional framework.  相似文献   

3.
Recrystallization of Ln(NO3)3 (Ln = Sm, Eu, Yb) in the presence of 18‐crown‐6 under aqueous conditions yielded [Ln(NO3)3(H2O)3] · 18‐crown‐6. X‐ray crystallography revealed isomorphous structures for each of the lanthanide complexes where [Ln(NO3)3(H2O)3] is involved in hydrogen bonding interactions with 18‐crown‐6. The transition point where the structural motif changes from [Ln(18‐crown‐6)(NO3)3] (with the metal residing in the crown cavity) to [Ln(NO3)3(H2O)3] · 18‐crown‐6 has been identified as at the Nd/Sm interface. A similar investigation involving [Ln(tos)3(H2O)6] (tos = p‐toluenesulfonate) and 18‐crown‐6 were resistant to crown incorporation. X‐ray studies show extensive intra‐ and intermolecular hydrogen bonding is present.  相似文献   

4.
Mixtures of 4‐carboxypyridinium perchlorate or 4‐carboxypyridinium tetrafluoroborate and 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) in ethanol and water solution yielded the title supramolecular salts, C6H6NO2+·ClO4·C12H24O6·2H2O and C6H6NO2+·BF4·C12H24O6·2H2O. Based on their similar crystal symmetries, unit cells and supramolecular assemblies, the salts are essentially isostructural. The asymmetric unit in each structure includes one protonated isonicotinic acid cation and one crown ether molecule, which together give a [(C6H6NO2)(18‐crown‐6)]+ supramolecular cation. N—H...O hydrogen bonds between the protonated N atoms and a single O atom of each crown ether result in the 4‐carboxypyridinium cations `perching' on the 18‐crown‐6 molecules. Further hydrogen‐bonding interactions involving the supramolecular cation and both water molecules form a one‐dimensional zigzag chain that propagates along the crystallographic c direction. O—H...O or O—H...F hydrogen bonds between one of the water molecules and the anions fix the anion positions as pendant upon this chain, without further increasing the dimensionality of the supramolecular network.  相似文献   

5.
In the structure of the complex of dibenzo‐18‐crown‐6 [systematic name: 2,5,8,15,18,21‐hexaoxatricyclo[20.4.0.09,14]hexacosa‐1(26),9,11,13,22,24‐hexaene] with 4‐methoxyanilinium tetrafluoroborate, C7H10NO+·BF4·C20H24O6, the protonated 4‐methoxyanilinium (MB‐NH3+) cation forms a 1:1 supramolecular rotator–stator complex with the dibenzo‐18‐crown‐6 molecule via N—H...O hydrogen bonds. The MB‐NH3+ group is attached from the convex side of the bowl‐shaped crown, in contrast with similar ammonium cations that nest in the curvature of the bowl. The cations are associated via C—H...π interactions, while the cations and anions are linked by weak C—H...F hydrogen bonds, forming cation–crown–anion chains parallel to [011].  相似文献   

6.
Poly[bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) γ‐octamolybdate(VI) dihydrate], {(C10H16N4)2[Mo8O26]·2H2O}n, (I), and bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) α‐dodecamolybdo(VI)silicate tetrahydrate, (C10H16N4)2[SiMo12O40]·4H2O, (II), display intense hydrogen bonding between the cationic pyrazolium species and the metal oxide anions. In (I), the asymmetric unit contains half a centrosymmetric γ‐type [Mo8O26]4− anion, which produces a one‐dimensional polymeric chain by corner‐sharing, one cation and one water molecule. Three‐centre bonding with 3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium, denoted [H2Me4bpz]2+ [N...O = 2.770 (4)–3.146 (4) Å], generates two‐dimensional layers that are further linked by hydrogen bonds involving water molecules [O...O = 2.902 (4) and 3.010 (4) Å]. In (II), each of the four independent [H2Me4bpz]2+ cations lies across a twofold axis. They link layers of [SiMo12O40]4− anions into a three‐dimensional framework, and the preferred sites for pyrazolium/anion hydrogen bonding are the terminal oxide atoms [N...O = 2.866 (6)–2.999 (6) Å], while anion/aqua interactions occur preferentially viaμ2‐O sites [O...O = 2.910 (6)–3.151 (6) Å].  相似文献   

7.
N,N‐bis(carboxymethyl)‐1‐adamantylamine acid (H2BCAA) or N‐(1‐adamantyl)‐iminodiacetic acid forms zwitterions that are intra‐stabilized by a ‘bifurcated’ N+‐H···O(carboxyl)2 interaction. In the crystal, both half‐protonated carboxyl groups of H2BCAA± are involved in linear O‐H···O inter‐molecular bridges of 2.46Å. In the studied BCAA‐CuII derivatives, the iminodiacetate‐moiety of the BCAA chelating ligand exhibits a mer‐NO2 conformation in [Cu(BCAA)(H2O)2] ( 1 ) and [Cu(BCAA)(Him)]2 ( 2 ), but a fac‐O2+N(apical) conformation in [Cu(BCAA)(bpy)(H2O)]·3.5H2O ( 3 ) [Him = imidazole, bpy =2,2′‐bipyridine]. In clear contrast, dipyridylamine (dpya), as auxiliary ligand, seems to be unable to promote the fac‐O2+N(apical) conformation in BCAA, as reveal the structures of two new salts with the trinuclear cation [(dpya)2Cu‐μ2‐Cu(BCAA)2‐Cu(dpya)2]2+ and the anions [Cu(BCAA)2]2? ( 4 ) or NO3? ( 5 ), respectively.  相似文献   

8.
The title compound, {[U(C12H14O4)O2(H2O)]·H2O}n, is the first actinide complex featuring adamantanecarboxylate ligands. The metal ion possesses a pentagonal–bipyramidal UO7 coordination involving two axial oxide ligands [U—O = 1.732 (5) and 1.764 (5) Å] and five equatorial O atoms [U—O = 2.259 (5)–2.494 (4) Å] of aqua and carboxylate ligands. The latter display pseudo‐chelating and bridging coordination modes of the carboxylate groups that are responsible for the generation of the centrosymmetric discrete uranium–carboxylate [UO2(μ‐RCOO)2UO2] dimers [U...U = 5.5130 (5) Å] and their connection into one‐dimensional chains. Hydrogen bonding involving two coordinated and two solvent water molecules [O...O = 2.719 (7)–2.872 (7) Å] yields centrosymmetric (H2O)4 ensembles and provides noncovalent linkage between the coordination chains to generate a three‐dimensional network structure.  相似文献   

9.
In the title compound, 4‐iodoanilinium 2‐carboxy‐6‐nitrobenzoate, C6H7IN+·C8H4NO6, the anions are linked by an O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 171°] into C(7) chains, and these chains are linked by two two‐centre N—H...O hydrogen bonds [H...O = 1.86 and 1.92 Å, N...O = 2.700 (3) and 2.786 (3) Å, and N—H...O = 153 and 158°] and one three‐centre N—H...(O)2 hydrogen bond [H...O = 2.02 and 2.41 Å, N...O = 2.896 (3) and 2.789 (3) Å, N—H...O = 162 and 105°, and O...H...O = 92°], thus forming sheets con­taining R(6), R(8), R(13) and R(18) rings.  相似文献   

10.
Each of the title compounds, 8‐methoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane hemisolvate, [Pt(CH14B10O)(C18H15P)2]·0.5CH2Cl2, (I), 8‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (II), and 9‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (III), has an 11‐vertex nido polyhedral skeleton, with the 7‐platinum centre ligating to two exo‐polyhedral PPh3 groups and an alkoxy‐substituted polyhedral borane ligand. Compounds (II) and (III) are isomers. The Pt—B distances are in the range 2.214 (7)–2.303 (7) Å for (I), 2.178 (16)–2.326 (16) Å for (II) and 2.205 (6)–2.327 (6) Å for (III).  相似文献   

11.
In (1,4,7,10,13,16‐hexaoxacyclooctadecane)rubidium hexachloridoantimonate(V), [Rb(C12H24O6)][SbCl6], (1), and its isomorphous caesium {(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium hexachloridoantimonate(V), [Cs(C12H24O6)][SbCl6]}, (2), and ammonium {ammonium hexachloridoantimonate(V)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1), (NH4)[SbCl6]·C12H24O6}, (3), analogues, the hexachloridoantimonate(V) anions and 18‐crown‐6 molecules reside across axes passing through the Sb atoms and the centroids of the 18‐crown‐6 groups, both of which coincide with centres of inversion. The Rb+ [in (1)], Cs+ [in (2)] and NH4+ [in (3)] cations are situated inside the cavity of the 18‐crown‐6 ring; they are situated on axes and are equally disordered about centres of inversion, deviating from the centroid of the 18‐crown‐6 molecule by 0.4808 (13), 0.9344 (7) and 0.515 (8) Å, respectively. Interaction of the ammonium cation and the 18‐crown‐6 group is supported by three equivalent hydrogen bonds [N...O = 2.928 (3) Å and N—H...O = 162°]. The centrosymmetric structure of [Cs(18‐crown‐6)]+, with the large Cs+ cation approaching the centre of the ligand cavity, is unprecedented and accompanied by unusually short Cs—O bonds [2.939 (2) and 3.091 (2) Å]. For all three compounds, the [M(18‐crown‐6)]+ cations and [SbCl6] anions afford linear stacks along the c axis, with the cationic complexes embedded between pairs of inversion‐related anions.  相似文献   

12.
In poly[[bis(μ‐4,4′‐bi‐1H‐pyrazole‐κ2N2:N2′)bis(3‐carboxyadamantane‐1‐carboxylato‐κO1)cobalt(II)] dihydrate], {[Co(C12H15O4)2(C6H6N4)2]·2H2O}n, (I), the Co2+ cation lies on an inversion centre and the 4,4′‐bipyrazole (4,4′‐bpz) ligands are also situated across centres of inversion. In its non‐isomorphous cadmium analogue, {[Cd(C12H15O4)2(C6H6N4)2]·2H2O}n, (II), the Cd2+ cation lies on a twofold axis. In both compounds, the metal cations adopt an octahedral coordination, with four pyrazole N atoms in the equatorial plane [Co—N = 2.156 (2) and 2.162 (2) Å; Cd—N = 2.298 (2) and 2.321 (2) Å] and two axial carboxylate O atoms [Co—O = 2.1547 (18) Å and Cd—O = 2.347 (2) Å]. In both structures, interligand hydrogen bonding [N...O = 2.682 (3)–2.819 (3) Å] is essential for stabilization of the MN4O2 environment with its unusually high (for bulky adamantanecarboxylates) number of coordinated N‐donor co‐ligands. The compounds adopt two‐dimensional coordination connectivities and exist as square‐grid [M(4,4′‐bpz)2]n networks accommodating monodentate carboxylate ligands. The interlayer linkage is provided by hydrogen bonds from the carboxylic acid groups via the solvent water molecules [O...O = 2.565 (3) and 2.616 (3) Å] to the carboxylate groups in the next layer [O...O = 2.717 (3)–2.841 (3) Å], thereby extending the structures in the third dimension.  相似文献   

13.
The title compound, [Nd(C7H3O6S)(H2O)]n or [Nd(SSA)(H2O)]n (H3SSA is 5‐sulfosalicylic acid), was synthesized by the hydrothermal reaction of Nd2O3 with H3SSA in water. The compound forms a three‐dimensional network in which the asymmetric unit contains one NdIII atom, one SSA ligand and one coordinated water mol­ecule. The central NdIII ion is eight‐coordinate, bonded to seven O atoms from five different SSA ligands [Nd—O = 2.405 (4)–2.612 (4) Å] and one aqua O atom [Nd—OW = 2.441 (4) Å].  相似文献   

14.
In bis(2‐carboxypyridinium) hexafluorosilicate, 2C6H6NO2+·SiF62−, (I), and bis(2‐carboxyquinolinium) hexafluorosilicate dihydrate, 2C10H8NO2+·SiF62−·2H2O, (II), the Si atoms of the anions reside on crystallographic centres of inversion. Primary inter‐ion interactions in (I) occur via strong N—H...F and O—H...F hydrogen bonds, generating corrugated layers incorporating [SiF6]2− anions as four‐connected net nodes and organic cations as simple links in between. In (II), a set of strong N—H...F, O—H...O and O—H...F hydrogen bonds, involving water molecules, gives a three‐dimensional heterocoordinated rutile‐like framework that integrates [SiF6]2− anions as six‐connected and water molecules as three‐connected nodes. The carboxyl groups of the cation are hydrogen bonded to the water molecule [O...O = 2.5533 (13) Å], while the N—H group supports direct bonding to the anion [N...F = 2.7061 (12) Å].  相似文献   

15.
[Cd(STrt)3], a Homoleptic Cadmium Complex with the Sterically Demanding Triphenylmethanethiolate Ligand Crystalline [K(18‐crown‐6)(THF)2][Cd(STrt)3] · 2 THF ( 1 ) has been isolated in 77% yield from the reaction of CdCl2, KSTrt and 18‐crown‐6 in tetrahydrofuran (THF; Trt = triphenylmethyl). The CdII ion of 1 exhibits a distorted trigonal coordination by three thiolate ligands (Cd–S 2.461(2)–2.518(2) Å, S–Cd–S 106.87(5)–135.20(5)°, Cd atom 0.24 Å above the S3 plane).  相似文献   

16.
In the title compound, 2C10H14N4·3C6HF5O, one of the pentafluorophenol molecules resides on a mirror plane bisecting the O...F axis. The components aggregate by N—H...N, N—H...O and O—H...N hydrogen bonds involving equal disordering of the H atoms into molecular ensembles based on a 2:1 pyrazole–phenol cyclic pattern [O...N = 2.7768 (16) Å and N...N = 2.859 (2) Å], crosslinked into one‐dimensional columns via hydrogen bonding between the outer pyrazole groups and additional pentafluorophenol molecules. The latter yields a 1:1 pyrazole–phenol catemer with alternating strong O—H...N [2.5975 (16) Å] and weaker N—H...O [2.8719 (17) Å] hydrogen bonds. This is the first reported molecular adduct of a pentafluorinated phenol and a nitrogen base, and suggests the utility of highly acidic phenols and pyrazoles for developing hydrogen‐bonded cocrystals.  相似文献   

17.
The 1:1 organic salt of the title compound, C7H6ClN2O+·C8H5Cl2O3? or [(2‐ABOX)(3,4‐D)], comprises the two constituent mol­ecules associated by an R22(8) graph‐set interaction through the carboxyl­ate group of 3,4‐D across the protonated N/N sites of 2‐ABOX [N?O 2.546 (3) and 2.795 (3) Å]. Cation/anion pairs associate across an inversion centre forming discrete tetramers via an additional three‐centre hydrogen‐bonding association from the latter N amino proton to a phenoxy O atom [N?O 3.176 (3) Å] and a carboxyl­ate O atom [N?O 2.841 (3) Å]. This formation differs from the polymeric hydrogen‐bonded chains previously observed for adduct structures of 2‐ABOX with carboxyl­ic acids.  相似文献   

18.
For charge balance in the title compound, (H5O2)(C3H7N6)3[Mn(C7H3NO4)2]2(OH)·C7H5NO4·5H2O, it is assumed that the metal atom site is disordered MnII/MnIII, probably due to partial air oxidation of the starting MnII species. The formula unit of the complex contains a hydroxonium hydrate cation, H5O2+, also known as the Zundel cation, with twofold symmetry. The O...O [2.445 (10) Å] and O...H distances [1.24 (2) Å] in the H5O2+ cation indicate a strong hydrogen bond. In addition, there is a hydroxide ion that is disordered with respect to a twofold rotation axis. One of the melaminium groups and the pyridine‐2,6‐dicarboxylate (pydc) ligand also reside on crystallographic twofold axes. The coordination environment of the Mn ion is distorted octahedral. Three intermolecular C=O...π interactions are observed, with distances of 3.536 (4), 3.262 (4) and 3.750 (4) Å between carboxylate C=O groups and the centroids of the aromatic rings of pydc and melaminium. There are numerous O—H...O, O—H...N, N—H...O, N—H...N and C—H...O hydrogen bonds. Most of the components of the structure are organized into one plane.  相似文献   

19.
The synthesis of pharmaceutical cocrystals is a strategy to enhance the performance of active pharmaceutical ingredients (APIs) without affecting their therapeutic efficiency. The 1:1 pharmaceutical cocrystal of the antituberculosis drug pyrazinamide (PZA) and the cocrystal former p‐aminobenzoic acid (p‐ABA), C7H7NO2·C5H5N3O, (1), was synthesized successfully and characterized by relevant solid‐state characterization methods. The cocrystal crystallizes in the monoclinic space group P21/n containing one molecule of each component. Both molecules associate via intermolecular O—H...O and N—H...O hydrogen bonds [O...O = 2.6102 (15) Å and O—H...O = 168.3 (19)°; N...O = 2.9259 (18) Å and N—H...O = 167.7 (16)°] to generate a dimeric acid–amide synthon. Neighbouring dimers are linked centrosymmetrically through N—H...O interactions [N...O = 3.1201 (18) Å and N—H...O = 136.9 (14)°] to form a tetrameric assembly supplemented by C—H...N interactions [C...N = 3.5277 (19) Å and C—H...N = 147°]. Linking of these tetrameric assemblies through N—H...O [N...O = 3.3026 (19) Å and N—H...O = 143.1 (17)°], N—H...N [N...N = 3.221 (2) Å and N—H...N = 177.9 (17)°] and C—H...O [C...O = 3.5354 (18) Å and C—H...O = 152°] interactions creates the two‐dimensional packing. Recrystallization of the cocrystals from the molten state revealed the formation of 4‐(pyrazine‐2‐carboxamido)benzoic acid, C12H9N3O3, (2), through a transamidation reaction between PZA and p‐ABA. Carboxamide (2) crystallizes in the triclinic space group P with one molecule in the asymmetric unit. Molecules of (2) form a centrosymmetric dimeric homosynthon through an acid–acid O—H...O hydrogen bond [O...O = 2.666 (3) Å and O—H...O = 178 (4)°]. Neighbouring assemblies are connected centrosymmetrically via a C—H...N interaction [C...N = 3.365 (3) Å and C—H...N = 142°] engaging the pyrazine groups to generate a linear chain. Adjacent chains are connected loosely via C—H...O interactions [C...O = 3.212 (3) Å and C—H...O = 149°] to generate a two‐dimensional sheet structure. Closely associated two‐dimensional sheets in both compounds are stacked via aromatic π‐stacking interactions engaging the pyrazine and benzene rings to create a three‐dimensional multi‐stack structure.  相似文献   

20.
The reaction of propane‐1,3‐diamine hydrochloride, 18‐crown‐6 and zinc(II) chloride in methanol solution yields the title complex salt [systematic name: propane‐1,3‐diaminium tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1)], (C3H12N2)[ZnCl4]·C12H24O6, with an unusual supramolecular structure. The diprotonated propane‐1,3‐diaminium cation forms an unexpected 1:1 supramolecular rotator–stator complex with the crown ether, viz. [C3H12N2(18‐crown‐6)]2+, in which one of the –NH3+ substituents nests in the crown and interacts through N—H...O hydrogen bonding. The other –NH3+ group interacts with the [ZnCl4]2− anion via N—H...Cl hydrogen bonding, forming cation–crown–anion ribbons parallel to [010].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号