首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two single‐enantiomer phosphoric triamides N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis[(S)‐(−)‐α‐methylbenzyl]phosphoric triamide, [2,6‐F2‐C6H3C(O)NH][(S)‐(−)‐(C6H5)CH(CH3)NH]2P(O), denoted L‐1 , and N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis[(R)‐(+)‐α‐methylbenzyl]phosphoric triamide, [2,6‐F2‐C6H3C(O)NH][(R)‐(+)‐(C6H5)CH(CH3)NH]2P(O), denoted D‐1 , both C23H24F2N3O2P, have been investigated. In their structures, chiral one‐dimensional hydrogen‐bonded architectures are formed along [100], mediated by relatively strong N—H…O(P) and N—H…O(C) hydrogen bonds. Both assemblies include the noncentrosymmetric graph‐set motifs R22(10), R21(6) and C22(8), and the compounds crystallize in the chiral space group P1. Due to the data collection of L‐1 at 120 K and of D‐1 at 95 K, the unit‐cell dimensions and volume show a slight difference; the contraction in the volume of D‐1 with respect to that in L‐1 is about 0.3%. The asymmetric units of both structures consist of two independent phosphoric triamide molecules, with the main difference being seen in one of the torsion angles in the OPNHCH(CH3)(C6H5) part. The Hirshfeld surface maps of these levo and dextro isomers are very similar; however, they are near mirror images of each other. For both structures, the full fingerprint plot of each symmetry‐independent molecule shows an almost asymmetric shape as a result of its different environment in the crystal packing. It is notable that NMR spectroscopy could distinguish between compounds L‐1 and D‐1 that have different relative stereocentres; however, the differences in chemical shifts between them were found to be about 0.02 to 0.001 ppm under calibrated temperature conditions. In each molecule, the two chiral parts are also different in NMR media, in which chemical shifts and P–H and P–C couplings have been studied.  相似文献   

2.
Two new glycoluril derivatives, namely diethyl 6‐ethyl‐1,4‐dioxo‐1,2,2a,3,4,6,7,7b‐octahydro‐5H‐2,3,4a,6,7a‐pentaazacyclopenta[cd]indene‐2a,7b‐dicarboxylate, C14H21N5O6, (I), and 6‐ethyl‐2a,7b‐diphenyl‐1,2,2a,3,4,6,7,7b‐octahydro‐5H‐2,3,4a,6,7a‐pentaazacyclopenta[cd]indene‐1,4‐dione, C20H21N5O2, (II), both bearing two free syn‐urea NH groups and two ureidyl C=O groups, assemble the same one‐dimensional chains in the solid state running parallel to the [010] direction via N—H...O hydrogen bonds. Furthermore, the chains of (I) are linked together into two‐dimensional networks via C—H...O hydrogen bonds.  相似文献   

3.
We prepared 0.53 and 0.32 mm id monolithic microcolumns by in situ copolymerization of a zwitterionic sulfobetaine functional monomer with bisphenol A glycerolate dimethacrylate (BIGDMA) and dioxyethylene dimetacrylate crosslinkers. The columns show a dual retention mechanism (hydrophilic‐interaction mode) in acetonitrile‐rich mobile phases and RP in highly aqueous mobile phases. The new 0.53 mm id columns provided excellent reproducibility, retention, and separation selectivity for phenolic acids and flavonoids. The new zwitterionic monolithic columns are highly orthogonal, with respect to alkyl silica stationary phases, not only in the hydrophilic‐interaction mode but also in the RP mode. The optimized monolithic zwitterionic microcolumn of 0.53 mm id was employed in the first dimension, either in the aqueous normal‐phase or in the RP mode, coupled with a short nonpolar core‐shell column in the second dimension, for comprehensive 2D LC separations of phenolic and flavonoid compounds. When the 2D setup with the sulfobetaine–BIGDMA column was used for repeated sample analysis, with alternating gradients of decreasing (hydrophilic‐interaction mode), and increasing (RP mode) concentration of acetonitrile on the sulfobetaine–BIGDMA column in the first dimension, useful complementary information on the sample could be obtained.  相似文献   

4.
The structures of two hydrated salts of 4‐aminophenylarsonic acid (p‐arsanilic acid), namely ammonium 4‐aminophenylarsonate monohydrate, NH4+·C6H7AsNO3·H2O, (I), and the one‐dimensional coordination polymer catena‐poly[[(4‐aminophenylarsonato‐κO)diaquasodium]‐μ‐aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter‐species N—H...O and arsonate and water O—H...O hydrogen bonds, giving the common two‐dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen‐bonding interactions involving the para‐amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na+ cation is coordinated by five O‐atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square‐pyramidal coordination environment. The water bridges generate one‐dimensional chains extending along c and extensive interchain O—H...O and N—H...O hydrogen‐bonding interactions link these chains, giving an overall three‐dimensional structure. The two structures reported here are the first reported examples of salts of p‐arsanilic acid.  相似文献   

5.
Polymorph VI of 4‐amino‐N‐(2‐pyridyl)benzenesulfonamide, C11H11N3O2S, is monoclinic (space group P21/n). The asymmetric unit contains two different tautomeric forms. The structure displays N—H...N and N—H...O hydrogen bonding. The two independent molecules form two separate two‐ and three‐dimensional hydrogen‐bonded networks which interpenetrate. The observed patterns of hydrogen bonding are analogous to those in polymorph I of sulfathiazole.  相似文献   

6.
The proliferation of increasingly more sophisticated analytical separation systems, often incorporating increasingly more powerful detection techniques, such as high‐resolution mass spectrometry, causes an urgent need for highly efficient data‐analysis and optimization strategies. This is especially true for comprehensive two‐dimensional chromatography applied to the separation of very complex samples. In this contribution, the requirement for chemometric tools is explained and the latest developments in approaches for (pre‐)processing and analyzing data arising from one‐ and two‐dimensional chromatography systems are reviewed. The final part of this review focuses on the application of chemometrics for method development and optimization.  相似文献   

7.
The structures of the anhydrous 1:1 proton‐transfer compounds of 4,5‐dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2‐aminopyrimidine, 3‐(aminocarbonyl)pyridine (nicotinamide) and 4‐(aminocarbonyl)pyridine (isonicotinamide), namely 2‐aminopyrimidinium 2‐carboxy‐4,5‐dichlorobenzoate, C4H6N3+·C8H3Cl2O4, (I), 3‐(aminocarbonyl)pyridinium 2‐carboxy‐4,5‐dichlorobenzoate, C6H7N2O+·C8H3Cl2O4, (II), and the unusual salt adduct 4‐(aminocarbonyl)pyridinium 2‐carboxy‐4,5‐dichlorobenzoate–methyl 2‐carboxy‐4,5‐dichlorobenzoate (1/1), C6H7N2O+·C8H3Cl2O4·C9H6Cl2O4, (III), have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen‐bonded cyclic bis(cation–anion) units having both R22(8) and R12(4) N—H...O interactions. In (II), the primary N—H...O‐linked cation–anion units are extended into a two‐dimensional sheet structure via amide–carboxyl and amide–carbonyl N—H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self‐synthesized methyl monoester of the acid as an adduct molecule, giving one‐dimensional hydrogen‐bonded chains. In all three structures, the hydrogen phthalate anions are essentially planar with short intramolecular carboxyl–carboxylate O—H...O hydrogen bonds [O...O = 2.393 (8)–2.410 (2) Å]. This work provides examples of low‐dimensional 1:1 hydrogen‐bonded DCPA structure types, and includes the first example of a discrete cyclic `heterotetramer.' This low dimensionality in the structures of the 1:1 aromatic Lewis base salts of the parent acid is generally associated with the planar DCPA anion species.  相似文献   

8.
The title compound, N‐hydroxy­propan­amide, C3H7NO2, crystallizes with Z′ = 3 in P21/c. The mol­ecules are linked by three N—H?O hydrogen bonds [N?O 2.8012 (16) to 2.8958 (15) Å; N—H?O 163 to 168°] and by three O—H?O hydrogen bonds [O?O 2.6589 (15) to 2.6775 (17) Å; O—H?O 165 to 177°] into a single three‐dimensional framework.  相似文献   

9.
The title Schiff base compound, N,N′‐bis­(pyrrol‐2‐yl­methyl­ene)­propane‐1,2‐di­amine, C13H16N4, forms an interesting supramolecular structure (a one‐dimensional ladder‐like polymer) in the solid state that is based on the existence of complementary intermolecular N—H⋯N=C hydrogen bonds between the monomer units. The polymer axis is collinear with the c axis of the orthorhombic unit cell. Quantum‐chemical AM1 calculations clearly indicate that self‐recognition in this system by hydrogen bonding is favoured on electrostatic grounds, since the partial atomic charge on the H atom of the pyrrole NH group (0.274 e) complements the partial atomic charge of the N atom of the C=N group (−0.239 e) on a neighbouring mol­ecule.  相似文献   

10.
The structures of two salts of flunarizine, namely 1‐bis[(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4‐bis[(4‐fluorophenyl)methyl]‐1‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazin‐1‐ium pyridine‐3‐carboxylate}, C26H27F2N2+·C6H4NO2, (I), the two ionic components are linked by a short charge‐assisted N—H...O hydrogen bond. The ion pairs are linked into a three‐dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4‐toluenesulfonate) dihydrate {systematic name: 1‐[bis(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine‐1,4‐diium bis(4‐methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three‐dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures.  相似文献   

11.
The title compound, 3‐[(4‐amino‐2‐methyl­pyrimidin‐5‐yl)­meth­yl]‐5‐(2‐hydroxy­eth­yl)‐4‐methyl­thia­zolium tetra­phenyl­borate monohydrate, C12H17N4OS+·C24H20B·H2O, is a salt in which the thiamine cations are linked by hydrogen bonds into a two‐dimensional network having (4,4)‐topology. The stacked sheets form channels, which are occupied by the anions; the cations and anions are linked by C—H⋯π(arene) hydrogen bonds.  相似文献   

12.
The morpholinium (tetrahydro‐2H‐1,4‐oxazin‐4‐ium) cation has been used as a counter‐ion in both inorganic and organic salt formation and particularly in metal complex stabilization. To examine the influence of interactive substituent groups in the aromatic rings of benzoic acids upon secondary structure generation, the anhydrous salts of morpholine with salicylic acid, C4H10NO+·C7H5O3, (I), 3,5‐dinitrosalicylic acid, C4H10NO+·C7H3N2O7, (II), 3,5‐dinitrobenzoic acid, C4H10NO+·C7H3N2O6, (III), and 4‐nitroanthranilic acid, C4H10NO+·C7H5N2O4, (IV), have been prepared and their hydrogen‐bonded crystal structures are described. In the crystal structures of (I), (III) and (IV), the cations and anions are linked by moderately strong N—H…Ocarboxyl hydrogen bonds, but the secondary structure propagation differs among the three, viz. one‐dimensional chains extending along [010] in (I), a discrete cyclic heterotetramer in (III), and in (IV), a heterotetramer with amine N—H…O hydrogen‐bond extensions along b, giving a two‐layered ribbon structure. With the heterotetramers in both (III) and (IV), the ion pairs are linked though inversion‐related N—H…Ocarboxylate hydrogen bonds, giving cyclic R44(12) motifs. With (II), in which the anion is a phenolate rather than a carboxylate, the stronger assocation is through a symmetric lateral three‐centre cyclic R12(6) N—H…(O,O′) hydrogen‐bonding linkage involving the phenolate and nitro O‐atom acceptors of the anion, with extension through a weaker O—H…Ocarboxyl hydrogen bond. This results in a one‐dimensional chain structure extending along [100]. In the structures of two of the salts [i.e. (II) and (IV)], there are also π–π ring interactions, with ring‐centroid separations of 3.5516 (9) and 3.7700 (9) Å in (II), and 3.7340 (9) Å in (IV).  相似文献   

13.
In the title compound, C6H18N22+·2C2H2ClO2, the cation lies across an inversion centre in the P space group. The ions are linked by two two‐centre N—H...O hydrogen bonds and by one three‐centre N—H...(O)2 hydrogen bond to form a three‐dimensional framework structure. The significance of this study lies in the analysis of the complex hydrogen‐bonded structure and in the comparison of this structure with those of other simple hexamethylenediammonium salts.  相似文献   

14.
The title complex, poly[bis(μ6‐pyridine‐2,6‐dicarboxylato N‐oxide)nickel(II)disilver(I)], [Ag2Ni(C7H3NO5)2]n or [Ag2Ni(pydco)2]n (H2pydco = pyridine‐2,6‐dicarboxylic acid N‐oxide), has a two‐dimensional sheet structure. The two carboxylate groups adopt two coordination modes. The NiII ion displays a distorted octahedral geometry, bonded to two carboxylate O atoms of two different pydco ligands and four O donors from another two ligands, i.e. two carboxylate O atoms and two N‐oxide O atoms. The AgI ion adopts a tetrahedral coordination, linked by three O atoms of three different carboxylate groups and an N‐oxide O atom.  相似文献   

15.
The structures of the 1:1 hydrated proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with oxalic acid, 4‐carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4·2H2O, (I), and with adipic acid, bis(4‐carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42−·2H2O, (II), are three‐dimensional hydrogen‐bonded constructs involving several different types of enlarged water‐bridged cyclic associations. In the structure of (I), the oxalate monoanions give head‐to‐tail carboxylic acid O—H...Ocarboxyl hydrogen‐bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N—H...O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O‐atom acceptors and amide and piperidinium N—H...Ocarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion‐related cations are interlinked through the two water molecules, which act as acceptors in dual amide N—H...Owater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N—H...Owater, water O—H...Oamide and piperidinium N—H...Ocarboxyl hydrogen bonds give the overall three‐dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non‐occurrence of the common hydrogen‐bonded amide–amide dimer, promoting instead various expanded cyclic hydrogen‐bonding motifs.  相似文献   

16.
In this study, the seGVB method was implemented for the N H bonding system, specifically for hydrogen‐bonded ammonia complexes, and the model well reproduces the MP2 geometries and energetics. A comparison between the ammonia dimer and water dimer is given from the viewpoint of valance‐bond structures in terms of the calculated bond energies and pair–pair interactions. The linear hydrogen bond is found to be stronger than the bent bonds in both cases, with the difference in energy between the linear and cyclic structures being comparable in both cases although the NH bonds are generally weaker. The energy decomposition clearly demonstrates that the changes in electronic energy are quite different in the two cases due to the presence of an additional lone pair on the water molecule, and it is this effect which leads to the net stabilization of the cyclic structure for the ammonia dimer. Proton‐transfer profiles for hydrogen‐bonded ammonia complexes [NH2 H NH2] and [NH3 H NH3]+ were calculated. The barrier for proton transfer in [NH3 H NH3]+ is larger than that in [NH2 H NH2], but smaller than that in the protonated water dimer. The different bonding structures substantially affect the barrier to proton transfer, even though they are isoelectronic systems. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 357–367, 1999  相似文献   

17.
Two series of banana‐shaped liquid crystalline (LC) H‐bonded complexes HPm / CBn (i.e., bent‐core H‐bonded side‐chain homopolymer HP mixed with bent‐core covalent‐bonded small molecule CB ) and CPm / HBn (i.e., bent‐core covalent‐bonded side‐chain homopolymer CP mixed with bent‐core H‐bonded small molecular complex HB ) with various m/n molar ratios were developed. The bent‐core covalent‐ and H‐bonded structural moieties were homopolymerized in the banana‐shaped LC H‐bonded complexes HPm / CBn and CPm / HBn , respectively. The influences of m/n molar ratios (polymeric moieties vs. small molecular moieties) on the mesomorphic and electro‐optical properties of both banana‐shaped LC H‐bonded complexes HPm / CBn and CPm / HBn were investigated. The polar smectic phases could be achieved and stabilized by smaller contents of polymeric dopants in banana‐shaped LC H‐bonded complexes, such as HP1/CB10 , HP1/CB15 , CP1/HB10 , and CP1/HB15 , which possessed tunable spontaneous polarization (Ps) values according to the molar ratios of m/n , that is, lower Ps values obtained in H‐bonded complexes HPm /CBn and CPm / HBn with higher ratios of H‐bonded moieties (larger m/n molar ratios), respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 764–774, 2010  相似文献   

18.
Reaction of biotin {C10H16N2O3S, HL; systematic name: 5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoic acid} with silver acetate and a few drops of aqueous ammonia leads to the deprotonation of the carboxylic acid group and the formation of a neutral chiral two‐dimensional polymer network, poly[[{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)] trihydrate], {[Ag(C10H15N2O3S)]·3H2O}n or {[Ag(L)]·3H2O}n, (I). Here, the AgI cations are pentacoordinate, coordinated by four biotin anions via two S atoms and a ureido O atom, and by two carboxylate O atoms of the same molecule. The reaction of biotin with silver salts of potentially coordinating anions, viz. nitrate and perchlorate, leads to the formation of the chiral one‐dimensional coordination polymers catena‐poly[[bis[nitratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] monohydrate], {[Ag2(NO3)2(C10H16N2O3S)2]·H2O}n or {[Ag2(NO3)2(HL)2]·H2O}n, (II), and catena‐poly[bis[perchloratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}], [Ag2(ClO4)2(C10H16N2O3S)2]n or [Ag2(ClO4)2(HL)2]n, (III), respectively. In (II), the AgI cations are again pentacoordinated by three biotin molecules via two S atoms and a ureido O atom, and by two O atoms of a nitrate anion. In (I), (II) and (III), the AgI cations are bridged by an S atom and are coordinated by the ureido O atom and the O atoms of the anions. The reaction of biotin with silver salts of noncoordinating anions, viz. hexafluoridophosphate (PF6) and hexafluoridoantimonate (SbF6), gave the chiral double‐stranded helical structures catena‐poly[[silver(I)‐bis{μ2‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridophosphate], {[Ag(C10H16N2O3S)2](PF6)}n or {[Ag(HL)2](PF6)}n, (IV), and catena‐poly[[[{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)]‐μ2‐{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridoantimonate], {[Ag(C10H16N2O3S)2](SbF6)}n or {[Ag(HL)2](SbF6)}n, (V), respectively. In (IV), the AgI cations have a tetrahedral coordination environment, coordinated by four biotin molecules via two S atoms, and by two carboxy O atoms of two different molecules. In (V), however, the AgI cations have a trigonal coordination environment, coordinated by three biotin molecules via two S atoms and one carboxy O atom. In (IV) and (V), neither the ureido O atom nor the F atoms of the anion are involved in coordination. Hence, the coordination environment of the AgI cations varies from AgS2O trigonal to AgS2O2 tetrahedral to AgS2O3 square‐pyramidal. The conformation of the valeric acid side chain varies from extended to twisted and this, together with the various anions present, has an influence on the solid‐state structures of the resulting compounds. The various O—H...O and N—H...O hydrogen bonds present result in the formation of chiral two‐ and three‐dimensional networks, which are further stabilized by C—H...X (X = O, F, S) interactions, and by N—H...F interactions for (IV) and (V). Biotin itself has a twisted valeric acid side chain which is involved in an intramolecular C—H...S hydrogen bond. The tetrahydrothiophene ring has an envelope conformation with the S atom as the flap. It is displaced from the mean plane of the four C atoms (plane B) by 0.8789 (6) Å, towards the ureido ring (plane A). Planes A and B are inclined to one another by 58.89 (14)°. In the crystal, molecules are linked via O—H...O and N—H...O hydrogen bonds, enclosing R22(8) loops, forming zigzag chains propagating along [001]. These chains are linked via N—H...O hydrogen bonds, and C—H...S and C—H...O interactions forming a three‐dimensional network. The absolute configurations of biotin and complexes (I), (II), (IV) and (V) were confirmed crystallographically by resonant scattering.  相似文献   

19.
The structures of 3‐amino‐1,2R,4S,5‐tetra­ammoniopentane tetrachloride monohydrate, C5H21N54+·4Cl?·H2O, and 1,2R,3,4S,5‐penta­ammoniopentane tetra­chloro­zincate tri­chlor­ide monohydrate, (C5H22N5)[ZnCl4]Cl3·H2O, have been determined from single‐crystal X‐ray diffraction data. Both compounds show a complex network of N—H?O, O—H?Cl and N—H?Cl hydrogen bonds. There are a total of 14 H atoms of the tetra‐cation and 15 H atoms of the penta‐cation available for hydrogen bonding. However, due to the particular shape of the primary linear poly­ammonium cations, only a certain number of H atoms can be involved in hydrogen‐bond formation. It is further shown that hydrogen bonding has an influence on the conformation of such alkyl­ammonium cations.  相似文献   

20.
We report the interaction of acetonitrile with one, two, and three water molecules using the Density Functional Theory method and the 6‐31+G* basis set. Different conformers were studied and the most stable conformer of acetonitrile–(water)n complex has total energies –209.1922504, –285.6224478, and –362.068728 hartrees with one, two, and three water molecules, respectively. The corresponding binding energy for these three structures is 4.52, 8.34, and 22.48 kcal/mol. The hydrogen‐bonding results in blue, blue, and redshift in C?N stretching mode in acetonitrile with one, two, and three water molecules, respectively, whereas there was a redshift in O? H symmetric stretching mode of water. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号