首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aminophosphane ligand 1‐amino‐2‐(diphenylphosphanyl)ethane [Ph2P(CH2)2NH2] reacts with dichloridotris(triphenylphosphane)ruthenium(II), [RuCl2(PPh3)3], to form chloridobis[2‐(diphenylphosphanyl)ethanamine‐κ2P,N](triphenylphosphane‐κP)ruthenium(II) chloride toluene monosolvate, [RuCl(C18H15P)(C14H16NP)2]Cl·C7H8 or [RuCl(PPh3){Ph2P(CH2)2NH2}2]Cl·C7H8. The asymmetric unit of the monoclinic unit cell contains two molecules of the RuII cation, two chloride anions and two toluene molecules. The RuII cation is octahedrally coordinated by two chelating Ph2P(CH2)2NH2 ligands, a triphenylphosphane (PPh3) ligand and a chloride ligand. The three P atoms are meridionally coordinated, with the Ph2P– groups from the ligands being trans. The two –NH2 groups are cis, as are the chloride and PPh3 ligands. This chiral stereochemistry of the [RuCl(PPh3){Ph2P(CH2)2NH2}2]+ cation is unique in ruthenium–aminophosphane chemistry.  相似文献   

2.
The structure of the title compound, [PtCl2(C5H5N)(C2H6S)], consists of discrete mol­ecules in which the Pt‐atom coordination is slightly distorted square planar. The Cl atoms are trans to each other, with a Cl—Pt—Cl angle of 176.60 (7)°. The pyridine ligand is rotated 64.5 (2)° from the Pt square plane and one of the Pt—Cl bonds essentially bisects the C—S—C angle of the di­methyl sulfide ligand. In the crystal structure, there are extensive weak C—H⋯Cl interactions, the shortest of which connects mol­ecules into centrosymmetric dimers. A comparison of the structural trans influence on Pt—S and Pt—­N distances for PtS(CH3)2 and Pt(pyridine) fragments, respectively, in square‐planar PtII complexes is presented.  相似文献   

3.
The title compound, [Cu(C7H5O3)2(C6H6N2O)2(H2O)2], is a two‐dimensional hydrogen‐bonded supramolecular complex. The CuII ion resides on a centre of symmetry and is in an octahedral coordination environment comprising two pyridine N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R22(4), R22(8) and R22(15) rings which lead to one‐dimensional polymeric chains. An extensive two‐dimensional network of N—H...O and O—H...O hydrogen bonds and C—H...π interactions are responsible for crystal stabilization.  相似文献   

4.
The title compound, [Co(C7H5O3)2(C6H6N2O)2(H2O)2], forms a three‐dimensional hydrogen‐bonded supramolecular structure. The CoII ion is in an octahedral coordination environment comprising two pyridyl N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R22(8), R22(12) and R22(14) rings, which lead to two‐dimensional chains. An extensive three‐dimensional supramolecular network of C—H...O, N—H...O and O—H...O hydrogen bonds and C—H...π interactions is responsible for crystal structure stabilization. This study is an example of the construction of a supramolecular assembly based on hydrogen bonds in mixed‐ligand metal complexes.  相似文献   

5.
In the square‐planar title complex, [PtI2(C7H7NO)2], the Pt atom lies on a crystallographic inversion center, coinciding with an anti arrangement of the 3‐acetyl­pyridine ligands. The dihedral angles between the pyridine rings and the Pt coordination plane are 67.5 (2)°, while those between the pyridine rings and the acetyl planes are 20.8 (5)°. The 195Pt NMR resonance of the title complex (CD2Cl2) was observed at −3224 p.p.m. The major structural parameters are compared with those from previously reported related structures.  相似文献   

6.
In the title compound, [Cu(C12H15N4S2)(C18H15P)], the copper(I) center is tetrahedrally coordinated by one S atom and two N atoms from one bis(3,5‐dimethylpyrazol‐1‐yl)dithioacetate ligand and one P atom from a triphenylphosphine ligand. In the crystal structure, adjacent pyrazole rings are involved in weak π–π interactions, thereby forming a one‐dimensional zigzag chain running along the b axis.  相似文献   

7.
8.
In the title complex, [Pd(C12H8FN4O2)2(C5H5N)2] or trans‐[Pd(FC6H4N=N—NC6H4NO2)(C5H5N)2], the Pd atom lies on a centre of inversion in space group P. The coordination geometry about the Pd2+ ion is square planar, with two deprotonated 3‐(2‐fluoro­phenyl)‐1‐(4‐nitro­phenyl)­triazenide ions, FC6H4N=N—NC6H4NO2?, acting as monodentate ligands (two‐electron donors), while two neutral pyridine mol­ecules complete the metal coordination sphere. The whole triazenide ligand is not planar, with the largest interplanar angle being 16.8 (5)° between the phenyl ring of the 2‐­fluorophenyl group and the plane defined by the N=N—N moiety. The Pd—N(triazenide) and Pd—N(pyridine) distances are 2.021 (3) and 2.039 (3) Å, respectively.  相似文献   

9.
The Ru—N bond distances in the title complex, [Ru(NO2)(C11H9N3)(C15H11N3)]BF4 or [Ru(NO2)(tpy)(azpy)]BF4, [tpy is 2,2′:6′,2′′‐ter­pyridine and azpy is 2‐(phenyl­azo)­pyridine], are Ru—Npy 2.063 (4), Ru—Nazo 2.036 (4), Ru—Nnitro 2.066 (3) Å, and Ru—Ntpy 2.082 (4), 1.982 (3) and 2.074 (4) Å. The azo N atom is trans to the nitro group. The azo N=N bond length is 1.265 (5) Å, which is the shortest found in such complexes to date. This indicates a multiple bond between Ru and the N atom of the nitro group, and π‐­backbonding [dπ(Ru) π*(azo)] is decreased.  相似文献   

10.
The isomorphous crystal structures of the title compounds, [Fe2M(C5H5)2(C17H14P)Cl(CO)]·CH2Cl2 or trans‐[MCl(CO)(PPh2Fc)2]·CH2Cl2 (M = Rh or Ir, and Fc is ferrocenyl), are reported. The data collection for M = Rh was performed at 293 (2) K, while the M = Ir data were collected at 160 (2) K. The compounds crystallize with two independent half‐molecules in the asymmetric unit, both occupying inversion centres, and are accompanied by a single dichloromethane molecule on a general position. Due to the symmetry, there is 0.50/0.50 disorder present in the chloride and carbonyl positions. One molecule in each structure also has a second type of disorder in the chloride and carbonyl positions, which was refined over another two positions of equal distribution. The steric impact of the bulky PPh2Fc ligands was evaluated using the Tolman cone‐angle model, resulting in an average value of 172° for the four molecules in both structures.  相似文献   

11.
In the title complex, [RuCl2(C7H7NO)(C2H6OS)2], the metal ion is at the centre of a distorted octahedral NOCl2S2 coordination sphere. The neutral 2‐acetyl­pyridine ligand binds to the metal ion through the pyridine N and carbonyl O atoms, forming a five‐membered chelate ring. The monodentate S‐coordinating di­methyl sulfoxide mol­ecules are mutually cis, and the two remaining positions in the coordination sphere are occupied by two mutually trans Cl? ions.  相似文献   

12.
The palladium(II) center in the title compound, trans‐[PdCl2(C5H2F6N2)2]·H2O, possesses a distorted square‐planar geometry. The NH groups are positioned on the same side of the PdN2Cl2 coordination plane. Four symmetry‐independent strong hydrogen bonds of three types (N—H⋯Cl, N—H⋯Cl and O—H⋯Cl) hold the structure together.  相似文献   

13.
The triclinic structure of the title compound, cyclo‐tetrakis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato‐κ2S:S)tetrakis[(triphenylphosphane‐κP)silver(I)], [Ag4(C7H4NO2S2)4(C18H15P)4], is a polymorph of the previously reported monoclinic structure [Dennehy, Mandolesi, Quinzani & Jennings (2007). Z. Anorg. Allg. Chem. 633 , 2746–2752]. In both polymorphs, the complex lies on a crystallographic inversion centre and the bond distances are closely comparable. Some differences can be found in the interatomic angles and torsion angles involving the inner Ag4S4 skeleton. The polymorphs contain essentially identical two‐dimensional layers, but with different layer stacking arrangements. In the triclinic form, all layers are related by lattice translation, while in the monoclinic form they are arranged around glide planes so that adjacent layers are mirrored with respect to each other.  相似文献   

14.
The title compound, [Zn(C32H16N8)(C5H6N2)]·2C4H8O, consists of one (phthalocyaninato)zinc (ZnPc) unit, a coordinated 4‐aminopyridine (4‐ap) molecule and two tetrahydrofuran (THF) solvent molecules. The central Zn atom is (4+1)‐coordinated by four isoindole N atoms of the Pc core and by the pyridine N atom of 4‐aminopyridine. The Zn atom is displaced by 0.4464 (8) Å from the isoindole N4 plane towards the pyridine N atom. The crystal structure is stabilized by intermolecular amine–phthalocyaninate N—H...N hydrogen bonds and π–π interactions between the aggregated Pc rings, which form molecular layers, and by weak van der Waals interactions between the layers. As well as hindering the aggregation of ZnPc molecules by occupying an axial position, the amino group will add new interactions which will favor applications of ZnPc, for example, as a sensitizer of photodynamic therapy.  相似文献   

15.
The title two‐dimensional hydrogen‐bonded coordination compounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The molecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4‐methyl‐1H‐imidazole (4‐MeIM) molecules and two O atoms from two 3‐carboxybenzoate (HBDC) anions in a square‐planar geometry. Adjacent molecules are linked through intermolecular N—H...O and O—H...O hydrogen bonds into a two‐dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry‐independent molecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4‐MeIM molecules and two O atoms from two 3‐methylbenzoate (3‐MeBC) anions in a square‐planar coordination. Two neutral complex molecules are held together via N—H...O(carboxylate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water molecules into a two‐dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.  相似文献   

16.
The crystal structure of the title compound, trans‐[PtCl2(C16H23P)2], has been determined at 100 K. The Pt atom is located on a twofold axis and adopts a distorted square‐planar coordination geometry. The structure is only the second example of a coordination complex containing a derivative of the 4,8‐dimethyl‐2‐phosphabicyclo[3.3.1]nonane (Lim) phosphine ligand family. The ligand contains four chiral C atoms, with the stereochemistry at three of these fixed during synthesis, therefore resulting in two possible ligand stereoisomers. The compound crystallizes in the chiral space group P43212 but is racemic, comprising an equimolar mixture of both stereoisomers disordered on a single ligand site. The effective cone angles for both isomers are the same at 146°.  相似文献   

17.
The title compound, [Mn(NCS)2(C18H12N6)2(CH4O)2], con­tains a centrosymmetric octahedral MnII centre and three pairs of trans‐coordinating ligands. It is the first example of a mononuclear metal complex with the 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine (tpt) ligand. Intermolecular π–π stacking of the planar tpt ligands, as well as hydrogen bonds between pyridyl N and methanol H atoms, results in the formation of a three‐dimensional network.  相似文献   

18.
In the title compound [systematic name: aqua(1,10‐phenanthroline‐κ2N,N′)(pyridine‐2,6‐di­carboxyl­ato‐κ3O2,N,O6)manganese(II) monohydrate, [Mn(C7H3NO4)(C12H8N2)(H2O)]·H2O, the manganese(II) centre is surrounded by one bidentate phenanthroline ligand [Mn—N = 2.248 (3) and 2.278 (3) Å], one tridentate dipicolinate ligand [Mn—N = 2.179 (3) Å, and Mn—O = 2.237 (2) and 2.266 (2) Å] and one water mol­ecule [Mn—O = 2.117 (3) Å], and it exhibits a strongly distorted octahedral geometry, with trans angles ranging from 144.12 (9) to 158.88 (11)°. Extensive intermolecular hydrogen‐bonding interactions involving coordinated and uncoordinated water mol­ecules and the carboxyl O atoms of the dipicolinate ligand, as well as a stacking interaction involving the phenanthroline rings, are observed in the crystal structure.  相似文献   

19.
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octahedrally coordinated CuII ions, with the 3‐oxo‐3,4‐dihydroquinoxaline‐2‐carboxylate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) molecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO molecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octahedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H‐atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex molecules are linked through an intermolecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxylate O atom, and by a weak intermolecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxylate O atom and a methyl C atom of the DMSO ligand. There is a weak intramolecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxylate O atom.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号