首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
We present a single‐molecule diffusional‐mobility‐shift assay (smDIMSA) for analyzing the interactions between membrane and water‐soluble proteins in the crowded membrane of living cells. We found that ligand–receptor interactions decreased the diffusional mobility of ErbB receptors and β‐adrenergic receptors, as determined by single‐particle tracking with super‐resolution microscopy. The shift in diffusional mobility was sensitive to the size of the water‐soluble binders that ranged from a few tens of kilodaltons to several hundred kilodaltons. This technique was used to quantitatively analyze the dissociation constant and the cooperativity of antibody interactions with the epidermal growth factor receptor and its mutants. smDIMSA enables the quantitative investigation of previously undetected ligand–receptor interactions in the intact membrane of living cells on the basis of the diffusivity of single‐molecule membrane proteins without ligand labeling.  相似文献   

2.
Protein mobility in living cells is vital for cell function. Both cytosolic viscosity and weak protein–protein interactions affect mobility, but examining viscosity and weak interaction effects is challenging. Herein, we demonstrate the use of 19F NMR spectroscopy to measure cytoplasmic viscosity and to characterize nonspecific protein–protein interactions in living Escherichia coli cells. The origins of resonance broadening in Escherichia coli cells were also investigated. We found that sample inhomogeneity has a negligible effect on resonance broadening, the cytoplasmic viscosity is only about 2–3 times that of water, and ubiquitous transient weak protein–protein interactions in the cytosol play a significant role in governing the detection of proteins by using in‐cell NMR spectroscopy.  相似文献   

3.
Protein–membrane interactions play important roles in signal transductions and functional regulation of membrane proteins. Here, we design a molecular dynamometer (MDM) for analyzing protein–membrane interaction on living cells. The MDM is constructed by assembling an artificial lipid bilayer and alkylated Cy3-DNA azide (azide-Cy3-Cx) on a silica bubble. After a functional aptamer is covalently anchored onto the corresponding target protein on a living cell through UV irradiation, azide-Cy3-Cx is conjugated with the aptamer through a click reaction to produce a “tug-of-war” between the MDM and the cell due to the buoyancy of the silica bubble. This induces the detachment of the protein from the cell membrane or the alkane terminal from the MDM enabling sub-piconewton embedding force measurement by changing the alkane chain length and simple fluorescence analysis. The successful analysis of embedding force variation of a protein on the cell membrane upon post-translational modifications demonstrates the practicability and expansibility of this method for mechanics-related research in biological systems.

A molecular dynamometer is designed to analyze the variation of sub-piconewton interaction between a specific protein and the membrane on living cells.  相似文献   

4.
Normal cardiac function is maintained through dynamic interactions of cardiac cells with each other and with the extracellular matrix. These interactions are important for remodeling during cardiac growth and pathophysiological conditions. However, the precise mechanisms of these interactions remain unclear. In this study we examined the importance of desmoplakin (DSP) in cardiac cell-cell interactions. Cell-cell communication in the heart requires the formation and preservation of cell contacts by cell adhesion junctions called desmosome-like structures. A major protein component of this complex is DSP, which plays a role in linking the cytoskeletal network to the plasma membrane. Our laboratory previously generated a polyclonal antibody (1611) against the detergent soluble fraction of cardiac fibroblast plasma membrane. In attempting to define which proteins 1611 recognizes, we performed two-dimensional electrophoresis and identified DSP as one of the major proteins recognized by 1611. Immunoprecipitation studies demonstrated that 1611 was able to directly pulldown DSP. We also demonstrate that 1611 and anti-DSP antibodies co-localize in whole heart sections. Finally, using a three-dimensional in vitro cell-cell interaction assay, we demonstrate that 1611 can inhibit cell-cell interactions. These data indicate that DSP is an important protein for cell-cell interactions and affects a variety of cellular functions, including cytokine secretion.  相似文献   

5.
An in vitro, rapid, and quantitative cell-based assay is needed to predict the efficacy of cancer drugs in individual patients, because a cancer patient may have unconventional aspects of tumor development. Here we report a rapid and label-free quantitative method for verifying apoptosis in living cancer cells cultured on a sensor chip with a newly developed high-precision surface plasmon resonance (SPR) sensor. The time-course cell reaction was monitored as the SPR angle change rate for 5 min during a 35-min cell culture of pancreatic cancer lines with a drug. The time-course cell reaction was significantly related to cell viability counted after 48 h as assessed by caspase-3 activity assay of apoptosis. Furthermore, the detected SPR signal was derived from the decrease in inner mitochondrial membrane potential. The results obtained are universally valid for various cancer drugs mediating apoptosis through different cell-signaling pathways and even for combined use in various pancreatic cancer cell lines. This system can be applied in a clinical setting to evaluate the personal therapeutic potential of drugs including pharmacodynamic interactions.  相似文献   

6.
刘君  张萌  陈鹏 《中国科学:化学》2012,(12):1694-1699
pH值是几乎影响到所有蛋白质分子表面电荷分布和相关结构变化的关键因素,许多蛋白质分子之间的相互作用也受到pH值的调控.近年来,基于非天然氨基酸的光交联探针被广泛应用于捕捉活细胞内的蛋白-蛋白相互作用.然而,由于环境pH值的改变往往导致蛋白质分子结构、带电性质的显著变化,因此现有的非天然氨基酸光交联探针难以实现在极端pH值条件下对相互作用的蛋白质分子的捕获和研究.本文将介绍本课题组新近发展的基于烷基双吖丙啶活性基团的非天然氨基酸光交联探针-DIZPK,通过这一探针,我们成功捕获到大肠杆菌中一种重要的酸性分子伴侣HdeA在膜间质内酸性胁迫过程中的作用对象.在捕获到的HdeA底物中,我们发现了两个膜间质中重要的分子伴侣蛋白:DegP和SurA.通过实验我们证明了在酸性胁迫条件下,DegP和SurA能够被HdeA保护不形成聚集体,并进而在随后的回复中性过程中能够协助HdeA对其他底物进行重折叠.这种不依赖于ATP的分子伴侣间协作模式可能起到了帮助肠道型细菌抵抗酸性胁迫的功能.基于上述实验结果,我们提出了一个"分子伴侣协同作用"的模型,用以阐释细菌利用抗酸性分子伴侣提高其在酸胁迫下逃逸的机理.推而广之,在原核和真核细胞中定点引入高可适性的非天然氨基酸光交联探针可广泛适用于在活体内探测众多的由pH值调控的蛋白-蛋白相互作用.  相似文献   

7.

In mammalian cells, protein-protein interactions constitute essential regulatory steps that modulate the activity of signaling pathways. To understand the complicated mechanisms of the interactions in living cells, chemical crosslinking or immunoprecipitation has extensively been used. However, such biochemical methods require cell disruption and do not necessarily preserve all interactions intact. In recent years, several elegant approaches have been developed towards understanding the interactions. A common advantage of these new approaches is direct observation of the interaction in living cells without the need for disrupting the cells. We describe herein recent advances of those methods including our recent works based on protein splicing for detecting protein-protein interactions in vivo and highlight some potential applications of these techniques.  相似文献   

8.
A cross-linking method is developed to elucidate glycan-mediated interactions between membrane proteins through sialic acids. The method provides information on previously unknown extensive glycomic interactions on cell membranes. The vast majority of membrane proteins are glycosylated with complicated glycan structures attached to the polypeptide backbone. Glycan–protein interactions are fundamental elements in many cellular events. Although significant advances have been made to identify protein–protein interactions in living cells, only modest advances have been made on glycan–protein interactions. Mechanistic elucidation of glycan–protein interactions has thus far remained elusive. Therefore, we developed a cross-linking mass spectrometry (XL-MS) workflow to directly identify glycan–protein interactions on the cell membrane using liquid chromatography-mass spectrometry (LC-MS). This method involved incorporating azido groups on cell surface glycans through biosynthetic pathways, followed by treatment of cell cultures with a synthesized reagent, N-hydroxysuccinimide (NHS)–cyclooctyne, which allowed the cross-linking of the sialic acid azides on glycans with primary amines on polypeptide backbones. The coupled peptide–glycan–peptide pairs after cross-linking were identified using the latest techniques in glycoproteomic and glycomic analyses and bioinformatics software. With this approach, information on the site of glycosylation, the glycoform, the source protein, and the target protein of the cross-linked pair were obtained. Glycoprotein–protein interactions involving unique glycoforms on the PNT2 cell surface were identified using the optimized and validated method. We built the GPX network of the PNT2 cell line and further investigated the biological roles of different glycan structures within protein complexes. Furthermore, we were able to build glycoprotein–protein complex models for previously unexplored interactions. The method will advance our future understanding of the roles of glycans in protein complexes on the cell surface.

The cell surface glycocalyx is highly interactive defined by extensive covalent and non-covalent interactions. A method for cross-linking and characterizing glycan–peptide interactions in situ is developed.  相似文献   

9.
The cell plasma membrane provides a highly interactive platform for the information transfer between the inside and outside of cells. The surface glycoprotein interaction network is extremely important in many extracellular events, and aberrant protein interactions are closely correlated with various diseases including cancer. Comprehensive analysis of cell surface protein interactions will deepen our understanding of the collaborations among surface proteins to regulate cellular activity. In this work, we developed a method integrating chemical crosslinking, an enzymatic reaction, and MS-based proteomics to systematically characterize proteins interacting with surface glycoproteins, and then constructed the surfaceome interaction network. Glycans covalently bound to proteins were employed as “baits”, and proteins that interact with surface glycoproteins were connected using chemical crosslinking. Glycans on surface glycoproteins were oxidized with galactose oxidase (GAO) and sequentially surface glycoproteins together with their interactors (“prey”) were enriched through hydrazide chemistry. In combination with quantitative proteomics, over 300 proteins interacting with surface glycoproteins were identified. Many important domains related to extracellular events were found on these proteins. Based on the protein–protein interaction database, we constructed the interaction network among the identified proteins, in which the hub proteins play more important roles in the interactome. Through analysis of crosslinked peptides, specific interactors were identified for glycoproteins on the cell surface. The newly developed method can be extensively applied to study glycoprotein interactions on the cell surface, including the dynamics of the surfaceome interactions in cells with external stimuli.

Proteins interacting with glycoproteins on the cell surface were systematically characterized by integrating chemical crosslinking, enzymatic oxidation, and MS-based proteomics. The surface glycoprotein interaction network was then constructed.  相似文献   

10.
Protein–protein interactions play pivotal roles in life, and the protein interaction affinity confers specific protein interaction events in physiology or pathology. Förster resonance energy transfer (FRET) has been widely used in biological and biomedical research to detect molecular interactions in vitro and in vivo. The FRET assay provides very high sensitivity and efficiency. Several attempts have been made to develop the FRET assay into a quantitative measurement for protein–protein interaction affinity in the past. However, the progress has been slow due to complicated procedures or because of challenges in differentiating the FRET signal from other direct emission signals from donor and receptor. This review focuses on recent developments of the quantitative FRET analysis and its application in the determination of protein–protein interaction affinity (KD), either through FRET acceptor emission or donor quenching methods. This paper mainly reviews novel theatrical developments and experimental procedures rather than specific experimental results. The FRET-based approach for protein interaction affinity determination provides several advantages, including high sensitivity, high accuracy, low cost, and high-throughput assay. The FRET-based methodology holds excellent potential for those difficult-to-be expressed proteins and for protein interactions in living cells.  相似文献   

11.
The interaction between the neutral 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) liposomes and cell membrane of Streptomyces griseus induced by the heat treatment at specific temperature was investigated, focusing on the internalization of the neutral POPC liposomes with S. griseus cells. In an attempt to clarify the modes of liposome internalization, various kinds of inhibitors of endocytotic pathways were used to treat S. griseus cells. The efficiency of the heat treatment on liposome–cell membrane interactions was finally characterized based on the hydrophobic, electrostatic interactions and hydration effect. In fact, the internalization of the neutral liposomes into these cells was found to show higher rate and greater amount at higher temperatures. The kinetic study showed that the maximum amount of the internalized liposomes was, respectively, 469 × 105 and 643 × 105 liposomes/cell at 37 and 41 °C. The internalization of the neutral liposomes induced by the heat treatment was characterized, implying that the endocytosis occurred. The interactions involving the internalization, adsorption, and fusion of these liposomes with S. griseus cells were mainly contributed by the hydrophobic interaction and the unstable hydrogen bonds caused by the loss of water of surface hydration of cell membrane rather than the electrostatic interaction under the specific heat condition.  相似文献   

12.
Upconversion nanoparticles (UCNPs) convert near‐infrared into visible light at much lower excitation densities than those used in classic two‐photon absorption microscopy. Here, we engineered <50 nm UCNPs for application as efficient lanthanide resonance energy transfer (LRET) donors inside living cells. By optimizing the dopant concentrations and the core–shell structure for higher excitation densities, we observed enhanced UCNP emission as well as strongly increased sensitized acceptor fluorescence. For the application of these UCNPs in complex biological environments, we developed a biocompatible surface coating functionalized with a nanobody recognizing green fluorescent protein (GFP). Thus, rapid and specific targeting to GFP‐tagged fusion proteins in the mitochondrial outer membrane and detection of protein interactions by LRET in living cells was achieved.  相似文献   

13.
Labeling of proteins with fluorescent dyes offers powerful means for monitoring protein interactions in vitro and in live cells. Only a few techniques for noncovalent fluorescence labeling with well-defined localization of the attached dye are currently available. Here, we present an efficient method for site-specific and stable noncovalent fluorescence labeling of histidine-tagged proteins. Different fluorophores were conjugated to a chemical recognition unit bearing three NTA moieties (tris-NTA). In contrast to the transient binding of conventional mono-NTA, the multivalent interaction of tris-NTA conjugated fluorophores with oligohistidine-tagged proteins resulted in complex lifetimes of more than an hour. The high selectivity of tris-NTA toward cumulated histidines enabled selective labeling of proteins in cell lysates and on the surface of live cells. Fluorescence labeling by tris-NTA conjugates was applied for the analysis of a ternary protein complex in solution and on surfaces. Formation of the complex and its stoichiometry was studied by analytical size exclusion chromatography and fluorescence quenching. The individual interactions were dissected on solid supports by using simultaneous mass-sensitive and multicolor fluorescence detection. Using these techniques, formation of a 1:1:1 stoichiometry by independent interactions of the receptor subunits with the ligand was shown. The incorporation of transition metal ions into the labeled proteins upon labeling with tris-NTA fluorophore conjugates provided an additional sensitive spectroscopic reporter for detecting and monitoring protein-protein interactions in real time. A broad application of these fluorescence conjugates for protein interaction analysis can be envisaged.  相似文献   

14.
The interaction between a protein molecule and a surface is ubiquitous to a number of important technologies, such as bio-sensing, biomaterials, and nanomedicine. This process is also essential to complex biological functions, such as protein–cell surface interactions. Here we explore the application of fundamental concepts developed in the field of surface science to the understanding of protein–surface interactions. In particular, we focus on the role of mobile precursor states in the reversible and irreversible adsorption of protein molecules. We attempt to apply these simple concepts to the analysis of the kinetics and thermodynamics of protein–surface interactions. We conclude by discussing how one may take advantage of these simple concepts in designing and controlling protein–surface interactions for various bio-interface based technologies.  相似文献   

15.
In living cells, membrane receptors transduce ligand binding into signals that initiate proliferation, specialization, and secretion of signaling molecules. Spatial organization of such receptors regulates signaling in several key immune cell interactions. In the most extensively studied of these, a T cell recognizes membrane-bound antigen presented by another cell, and forms a complex junction called the "immunological synapse" (IS). The importance of spatial organization at the IS and the quantification of its effect on signaling remain controversial topics. Researchers have successfully investigated the IS using lipid bilayers supported on solid substrates as model antigen-presenting membranes. Recent technical developments have enabled micron- and nanometre-scale patterning of supported lipid bilayers (SLBs) and their application to immune cell studies with provocative results, including spatial mutation of the IS. In this tutorial review, we introduce the IS; discuss SLB techniques, including micropatterning; and discuss various methods used to perturb and quantify the IS.  相似文献   

16.
Supported lipid bilayers (SLBs) have been widely used as model systems to study cell membrane processes because they preserve the same 2D membrane fluidity found in living cells. One of the most significant limitations of this platform, however, is its inability to incorporate mobile transmembrane species. It is often postulated that transmembrane proteins reconstituted in SLBs lose their mobility because of direct interactions between the protein and the underlying substrate. Herein, we demonstrate a highly mobile fraction for a transmembrane protein, annexin V. Our strategy involves supporting the lipid bilayer on a double cushion, where we not only create a large space to accommodate the transmembrane portion of the macromolecule but also passivate the underlying substrate to reduce nonspecific protein-substrate interactions. The thickness of the confined water layer can be tuned by fusing vesicles containing polyethyleneglycol (PEG)-conjugated lipids of various molecular weights to a glass substrate that has first been passivated with a sacrificial layer of bovine serum albumin (BSA). The 2D fluidity of these systems was characterized by fluorescence recovery after photobleaching (FRAP) measurements. Uniform, mobile phospholipid bilayers with lipid diffusion coefficients of around 3 x 10(-8) cm2/s and percent mobile fractions of over 95% were obtained. Moreover, we obtained annexin V diffusion coefficients that were also around 3 x 10(-8) cm2/s with mobile fractions of up to 75%. This represents a significant improvement over bilayer platforms fabricated directly on glass or using single cushion strategies.  相似文献   

17.
Split-protein sensors have become an important tool for the analysis of protein-protein interactions in living cells. We present here a combinatorial method for the generation of new split-protein sensors and demonstrate its application toward the (beta/alpha)(8)-barrel enzyme N-(5'-phosphoribosyl)-anthranilate isomerase Trp1p from Saccharomyces cerevisiae. The generated split-Trp protein sensors allow for the detection of protein-protein interactions in the cytosol as well as the membrane by enabling trp1 cells to grow on medium lacking tryptophan. This powerful selection complements the repertoire of the currently used split-protein sensors and provides a new tool for high-throughput interaction screening.  相似文献   

18.
Biochemical transduction of signals received by living cells typically involves molecular interactions and enzyme-mediated reactions at the cell membrane, a problem that is analogous to reacting species on a catalyst surface or interface. We have developed an efficient Brownian dynamics algorithm that is especially suited for such systems and have compared the simulation results with various continuum theories through prediction of effective enzymatic rate constant values. We specifically consider reaction versus diffusion limitation, the effect of increasing enzyme density, and the spontaneous membrane association/dissociation of enzyme molecules. In all cases, we find the theory and simulations to be in quantitative agreement. This algorithm may be readily adapted for the stochastic simulation of more complex cell signaling systems.  相似文献   

19.
Zeolites adsorb microbial cells on their surfaces and selective adsorption for specific microorganisms was seen with certain zeolites. Tests for the adsorption ability of zeolites were conducted using various established microbial cell lines. Specific cell lines were shown to selectively absorb to certain zeolites, species to species.

In order to understand the selectivity of adsorption, we tested adsorption under various pH conditions and determined the zeta-potentials of zeolites and cells. The adsorption of some cell lines depended on the pH, and some microorganisms were preferentially adsorbed at acidic pH. The values of zeta-potentials were used for calculating the electric double layer interaction energy between zeolites and microbial cells. There was a correlation between the experimental adsorption results and the interaction energy. Moreover, we evaluated the surface hydrophobicity of bacterial cells by using the microbial adherence to hydrocarbon (MATH) assay. In addition, we also applied this method for zeolites to quantify relative surface hydrophobicity. As a result, we found a correlation between the adsorption results and the hydrophobicity of bacterial cells and zeolites. These results suggested that adsorption could be explained mainly by electric double layer interactions and hydrophobic interactions.

Finally, by using the zeolites Na-BEA and H-Y, we succeeded in clearly separating three representative microbes from a mixture of Escherichia coli, Bacillus subtilis and Staphylococcus aureus. Zeolites could adsorb each of the bacterial cell species with high selectivity even from a mixed suspension. Zeolites can therefore be used as effective carrier materials to provide an easy, rapid and accurate method for cell separation.  相似文献   


20.
S100B is a calcium-binding protein that governs calcium-mediated responses in a variety of cells—especially neuronal and glial cells. It is also extensively investigated as a potential biomarker for several disease conditions, especially neurodegenerative ones. In order to establish S100B as a viable pharmaceutical target, it is critical to understand its mechanistic role in signaling pathways and its interacting partners. In this report, we provide evidence to support a calcium-regulated interaction between S100B and the neuronal calcium sensor protein, neurocalcin delta both in vitro and in living cells. Membrane overlay assays were used to test the interaction between purified proteins in vitro and bimolecular fluorescence complementation assays, for interactions in living cells. Added calcium is essential for interaction in vitro; however, in living cells, calcium elevation causes translocation of the NCALD-S100B complex to the membrane-rich, perinuclear trans-Golgi network in COS7 cells, suggesting that the response is independent of specialized structures/molecules found in neuronal/glial cells. Similar results are also observed with hippocalcin, a closely related paralog; however, the interaction appears less robust in vitro. The N-terminal region of NCALD and HPCA appear to be critical for interaction with S100B based on in vitro experiments. The possible physiological significance of this interaction is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号