首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chloro­form solvate of uncarine C (pteropodine), (1′S,3R,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octa­hydro‐1′‐methyl‐2‐oxospiro­[3H‐indole‐3,6′(4′aH)‐[1H]­pyrano­[3,4‐f]indolizine]‐4′‐carboxyl­ic acid methyl ester, C21H24N2O4·CHCl3, has an absolute configuration with the spiro C atom in the R configuration. Its epimer at the spiro C atom, uncarine E (isopteropodine), (1′S,3S,4′aS,5′aS,10′aS)‐1,2,5′,5′a,7′,8′,10′,10′a‐octahydro‐1′‐methyl‐2‐oxospiro[3H‐indole‐3,6′(4′aH)‐[1H]pyrano[3,4‐f]indolizine]‐4′‐carboxylic acid methyl ester, C21H24N2O4, has Z′ = 3, with no solvent. Both form intermolecular hydrogen bonds involving only the ox­indole, with N?O distances in the range 2.759 (4)–2.894 (5) Å.  相似文献   

2.
The 2,2′‐methylenebis[furan] ( 1 ) was converted to 1‐{(4R,6S))‐6‐[(2R)‐2,4‐dihydroxybutyl]‐2,2‐dimethyl‐1,3‐dioxan‐4‐yl}‐3‐[(2R,4R)‐tetrahydro‐4,6‐dihydroxy‐2H‐pyran‐2‐yl)propan‐2‐one ((+)‐ 18 ) and its (4S)‐epimer (?)‐ 19 with high stereo‐ and enantioselectivity (Schemes 13). Under acidic methanolysis, (+)‐ 18 yielded a single spiroketal, (3R)‐4‐{(1R,3S,4′R,5R,6′S,7R)‐3′,4′,5′,6′‐tetrahydro‐4′‐hydroxy‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐6′‐yl}butane‐1,3‐diol ((?)‐ 20 ), in which both O‐atoms at the spiro center reside in equatorial positions, this being due to the tricyclic nature of (?)‐ 20 (methyl pyranoside formation). Compound (?)‐ 19 was converted similarly into the (4′S)‐epimeric tricyclic spiroketal (?)‐ 21 that also adopts a similar (3S)‐configuration and conformation. Spiroketals (?)‐ 20 , (?)‐ 21 and analog (?)‐ 23 , i.e., (1R,3S,4′R,5R,6′R)‐3′,4′,5′,6′‐tetrahydro‐6′‐[(2S)‐2‐hydroxybut‐3‐enyl]‐7‐methoxyspiro[2,6‐dioxabicyclo[3.3.1]nonane‐3,2′‐[2H]pyran]‐4′‐ol, derived from (?)‐ 20 , were assayed for their cytotoxicity toward murine P388 lymphocytic leukemia and six human cancer cell lines. Only racemic (±)‐ 21 showed evidence of cancer‐cell‐growth inhibition (P388, ED50: 6.9 μg/ml).  相似文献   

3.
The stereochemistry of the iridoid plumeridoid C, C15H18O7, was established by X‐ray single‐crystal structure analysis, giving (2′R,3R,4R,4aS,7aR)‐methyl 3‐hydroxy‐4′‐[(S)‐1‐hydroxyethyl]‐5′‐oxo‐3,4,4a,7a‐tetrahydro‐1H,5′H‐spiro[cyclopenta[c]pyran‐7,2′‐furan]‐4‐carboxylate. The absolute structure of the title compound was determined on the basis of the Flack x parameter and Bayesian statistics on Bijvoet differences. The hydrogen‐bond donor and acceptor functions of the two hydroxy groups are employed in the formation of O—H...O‐bonded helical chains.  相似文献   

4.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

5.
The title compounds, (2R,2′′S,3b′S,4a′R,7b′S,8a′R)‐per­hydro­di­spiro­[furan‐2,3′‐di­cyclo­penta­[a,e]­pentalene‐7′,2′′‐furan]‐5,5′′‐dione, C20H26O4, and (3aR,3bR,4aR,4bS,5aS,8aR,8bR,9aR,9bS,10aS)‐per­hydro­dipentaleno­[2,1‐a:2′,1′‐e]­pentalene‐1,6‐dione, C20H26O2, are intermediates identified during the synthesis of dodecahedrane. Crystallographic studies have established the ring‐junction stereochemistry for these important intermediates. All the ring junctions are cis‐fused, and the molecular packing is stabilized by van der Waals interactions.  相似文献   

6.
The structures of new oxaindane spiropyrans derived from 7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐carbaldehyde (SP1), namely N‐benzyl‐2‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]hydrazinecarbothioamide, C27H25N3O3S, (I), at 120 (2) K, and N′‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]‐4‐methylbenzohydrazide acetone monosolvate, C27H24N2O4·C3H6O, (II), at 100 (2) K, are reported. The photochromically active Cspiro—O bond length in (I) is close to that in the parent compound (SP1), and in (II) it is shorter. In (I), centrosymmetric pairs of molecules are bound by two equivalent N—H...S hydrogen bonds, forming an eight‐membered ring with two donors and two acceptors.  相似文献   

7.
The structure of naturally‐occurring cinerin C [systematic name: (7S,8R,3′R,4′S,5′R)‐Δ8′‐4′‐hydroxy‐5,5′,3′‐trimethoxy‐3,4‐methylenedioxy‐2′,3′,4′,5′‐tetrahydro‐2′‐oxo‐7.3′,8.5′‐neolignan], isolated from the ethanol extract of leaves of Pleurothyrium cinereum (Lauraceae), has previously been established by NMR and HRMS spectroscopy, and its absolute configuration established by circular dichroism measurements. For the first time, its crystal strucure has now been established by single‐crystal X‐ray analysis, as the monohydrate, C22H26O7·H2O. The bicyclooctane moiety comprises fused cyclopentane and cyclohexenone rings which are almost coplanar. An intermolecular O—H...O hydrogen bond links the 4′‐OH and 5′‐OCH3 groups along the c axis.  相似文献   

8.
3‐tert‐Butyl‐7‐(4‐methoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H37N3O3, (I), 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C32H39N3O4, (II), 3‐tert‐butyl‐4′,4′‐dimethyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H35N3O4, (III), and 3‐tert‐butyl‐4′,4′‐dimethyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione ethanol 0.67‐solvate, C33H41N3O5·0.67C2H6O, (IV), all contain reduced pyridine rings having half‐chair conformations. The molecules of (I) and (II) are linked into centrosymmetric dimers and simple chains, respectively, by C—H...O hydrogen bonds, augmented only in (I) by a C—H...π hydrogen bond. The molecules of (III) are linked by a combination of C—H...O and C—H...π hydrogen bonds into a chain of edge‐fused centrosymmetric rings, further linked by weak hydrogen bonds into supramolecular arrays in two or three dimensions. The heterocyclic molecules in (IV) are linked by two independent C—H...O hydrogen bonds into sheets, from which the partial‐occupancy ethanol molecules are pendent. The significance of this study lies in its finding of a very wide range of supramolecular aggregation modes dependent on rather modest changes in the peripheral substituents remote from the main hydrogen‐bond acceptor sites.  相似文献   

9.
Two new sesquiterpenoids, sinularioperoxide E ( 1 ), ethyl 5‐[(2′S,5′E)‐2′, 6′‐dimethylocta‐5′,7′‐dienyl]furan‐3‐carboxylate ( 3 ), and a new C11 terpenoid‐related carboxylic acid, (3S,6E)‐3,7‐dimethyl‐nona‐6,8‐dienoic acid ( 2 ) were isolated from a Formosan soft coral Sinularia sp. The structures of 1‐3 were elucidated on the basis of extensive spectroscopic analyses and by comparison of the spectral data with those of the related metabolites.  相似文献   

10.
The photooxygenation of (4R,4aS,7R)-4,4a,5,6,7,8-hexahydro-4,7-dimethyl-3H-2-benzopyran ( 16 ) was performed in (i) MeOH, (ii) acetaldehyde, and (iii) acetone at ?78°. The products obtained respectively were (i) (2R)-2-[(1S,4R)-4-methyl-2-oxocyclohexyl]propyl formate ( 17 ; 72% yield), (ii) 17 (54.5%), (1R,4R,4aS,7R)-3,4,4a,5,6,7-hexahydro-4,7-dimethyl-1H-2-benzopyran-2-yl hydroperoxide ( 19 ; 16.7%), a 12:1 ratio of (3R,4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,7,10-trimethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4-trioxane ( 20 ) and its C(3)-epimer 21 (17%), together with evidence for the 1,2-dioxetane ( 22 ) originating from the addition of dioxygen to the re-re face of the double bond of 16 , and iii) unidentified products and traces of 22 . Addition of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) to the acetone solution of 16 after photooxygenation afforded (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[1,8a-e]-1,2,4,-trioxane ( 23 , 40%). The photooxygenation of 16 in CH2Cl2 at ?78° followed by addition of acetone and Me3SiOTf afforded 17 (11%), 23 (59%), and (4aR,7R,7aS,10R,11aR)-7,7a,8,9,10,11-hexahydro-3,3,7,10-tetramethyl-6H-[2]benzopyrano[8a,1-e]-1,2,4-trioxane ( 24 ; 5%. Repetition of the last experiment, but replacing acetone by cyclopentanone, gave 17 (16%), (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[1,8a-e]-1,2,4-trixane] ( 25 ; 61%), and (4′aR,7′R,7′aS,10′R,11′aR)-7′,7′a,8′,9′,10′,11′-hexahydro-7′,10′-dimethylspiro[cyclopentane-1,3′-6′H-[2]benzopyrano[8a,1-e]-1,2,4-trixane] ( 26 , 4%). The X-ray analysis of 23 was performed, which together with the NMR data, established the structure of the trioxanes 20, 21, 24, 25 , and 26 . Mechanistic and synthesis aspects of these reactions were discussed in relation to the construction of the 1,2,4-trioxane ring in arteannuin and similar molecules.  相似文献   

11.
The diazonium salt derived from 4‐amino‐N,1,3‐trimethyl‐N‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐1H‐pyrazole‐5‐carboxamide ( 14 ) was reacted with a mixture of CuSO4 and NaCl, with ascorbic acid as an initiator to afford the planar derivative 4,6‐dihydro‐1,4,6,8‐tetramethyl‐3‐phenyldipyrazolo[3,4‐b:4′,3′‐d]pyridin‐5(3H)‐one ( 16 ) and its unexpected isomer 4,6‐dihydro‐3,4,6,8‐tetramethyl‐1‐phenyldipyrazolo[4,3‐b:4′,3′‐d]pyridin‐5(1H)‐one ( 17 ), as well as the epimers (3S,4S)‐ (or (3S,4R)‐) and (3S,4R)‐ (or (3S,4S)‐) 4‐chloro‐2,4‐dihydro‐1′,3′,5,5′‐tetramethyl‐2‐phenylspiro[pyrazole‐3,4′(1′H)‐pyrrolo[3,4‐c]pyrazol]‐6′(5′H)‐one ( 18a and b , respectively). Epimers 18a and b were converted under basic conditions to 4′‐chloro‐N,1,3,3′‐tetramethyl‐1′‐phenyl‐[4,5′‐bi‐1H‐pyrazole]‐5‐carboxamide ( 19 ). The structures of isomers 16 and 17 determined by single‐crystal X‐ray analysis are also reported. Linear dichroism (LD) measurements for the above isomers suggest that 17 intercalates into DNA, and 17 exhibited antiproliferation activity against human NCI‐H460 pulmonary carcinoma cells.  相似文献   

12.
A variety of 3″,5″‐diaryl‐3″H,4′H‐dispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]thiadiazol]‐4′‐ones 3a‐c were synthesized regioselectively through the reaction of 4′H,5H‐trispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]oxadithiino[5,6‐c]chromene‐5″,1″′‐cyclohexan]‐4′‐one ( 1 ) with nitrilimines (generated in situ via triethylamine dehydrohalogenation of the corresponding hydrazonoyl chlorides 2a‐c ) in refluxing dry toluene. Single crystal X‐ray diffraction studies of 3a,b add support for the established structure. Similarly, 3′,5′‐diaryl‐2,2‐dimethyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5a‐c were obtained in a regioselective manner through the reaction of 2,2,5′,5′‐tetramethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino[5,6‐c]chromen]‐4‐one ( 4a ) with nitrilimines under similar reaction conditions. On the other hand, reaction of 2,5′‐diethyl‐2,5′‐dimethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino‐[5,6‐c]chromen]‐4‐one ( 4b ) with nitrilimines in refluxing dry toluene afforded the corresponding 3′,5′‐diaryl‐2‐ethyl‐2‐methyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5d‐f as two unisolable diastereoisomeric forms.  相似文献   

13.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

14.
Violaxanthin A (=(all‐E,3S,5S,6R,3′S,5′S,6′R)‐5,6 : 5′,6′‐diepoxy‐5,6,5′,6′‐tetrahydro‐β,β‐carotene‐3,3′‐diol =syn,syn‐violaxanthin; 5 ) and violaxanthin B (=(all‐E,3S,5S,6R,3′S,5′R,6′S)‐5,6 : 5′,6′‐diepoxy‐5,6,5′,6′‐tetrahydro‐β,β‐carotene‐3,3′‐diol=syn,anti‐violaxanthin; 6 ) were prepared by epoxidation of zeaxanthin diacetate ( 1 ) with monoperphthalic acid. Violaxanthins 5 and 6 were submitted to thermal isomerization and I2‐catalyzed photoisomerization. The structure of the main products, i.e., (9Z)‐ 5 , (13Z)‐ 5 , (9Z)‐ 6 , (9′Z)‐ 6 , (13Z)‐ 6 , and (13′Z)‐ 6 , was determined by their UV/VIS, CD, 1H‐NMR, 13C‐NMR, and mass spectra.  相似文献   

15.
1,4-Diphenyl-2,3-dioxabicyclo[2.2.1]hept-5-ene ( 2 ), on treatment with a catalytic amount of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) in CH2Cl2 at ?78°, reacts with excess (?)-menthone ( 10 ) to give (1S,2S,4′aS,5R,7′aS)-4′a,7′a-dihydro-2-isopropyl-5-methyl-6′,7′-diphenylspiro[cyclohexane-1,3′-[7′H]cyclopenta-[1,2,4]trioxine] ( 11 ) and its (1R,2S,4′aR,5R,7′aR)-diastereoisomer 12 in a 1:1 ratio and in 21% yield. Repeating the reaction with 1.1 equiv. of Me3SiOTf with respect to 2 affords 11 , 12 , and (1S,2S,3′a.R,5R,6′aS)-3′a,6′a-dihydro-2-isopropyl-5-methyl-3′a-phenoxy-5′-phenylspiro[cyclohexane-l,2′-[4′H]cyclopenta[1,3]dioxole] ( 13 ) together with its(1R,2S,3′aS,5R,6′aR)-diastereoisomer 14 in a ratio of 3:3:3:1 and in 56% yield. (+)-Nopinone( 15 ) in excess reacts with 2 in the presence of 1.1 equiv. of Me3SiOTf to give a pair of 1,2,4-trioxanes ( 16 and 17 ) analogous to 11 and 12 , and a pair of 1,3-dioxolanes ( 18 and 19 ) analogous to 13 and 14 , in a ratio of 8:2:3:3 and in 85% yield. (?)-Carvone and racemic 2-(tert-butyl)cyclohexanone under the same conditions behave like 15 and deliver pairs of diastereoisomeric trioxanes and dioxolanes. In general, catalytic amounts of Me3SiOTf give rise to trioxanes, whereas 1.5 equiv. overwhelmingly engender dioxolanes. Adamantan-2-one combines with 2 giving only (4′aRS,7′aRS)-4′a,7′a-dihydro-6′.7′a-diphenylspiro[adamantane-2,3′-[7′H]cyclopenta[1,2,4]trioxine] in 98% yield regardless of the amount of Me3SiOTf used. The reaction of 1,4-dipheny 1-2,3-dioxabicyclo[2.2.2]oct-5-ene ( 32 ) with 10 and 1.1 equiv. of Me3SiOTf produces only the pair of trioxanes 33 and 34 homologous to 11 and 12 . Treatment of the (S,S)-diastereoisomer 33 with Zn and AcOH furnishes (1S,2S)-1,4-diphenylcyclohex-3-ene-1,2-diol. The crystal structures of 11 – 13 and 16 are obtained by X-ray analysis. The reaction courses of 10 and the other chiral cyclohexanones with prochiral endoperoxides 2 and 32 to give trioxanes are rationalized in terms of the respective enantiomeric silylperoxy cations which are completely differentiated by the si and re faces of the ketone function. The origin of the 1,3-dioxolanes is ascribed to 1,2 rearrangement of the corresponding trioxanes, which occurs with retention of configuration of the angular substituent.  相似文献   

16.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

17.
Three new neolignans, (7S,8S,7′E)‐4,9‐dihydroxy‐3,7,3′,9′‐tetramethoxy‐8,4′‐oxyneolign‐7′‐ene ( 1 ), (7R,8S,7′E)‐4, 9‐dihydroxy‐3,7,3′,9′‐tetramethoxy‐8,4′‐oxyneolign‐7′‐ene ( 2 ), (7S,8S,7′E)‐5, 9‐dihydroxy‐3,7,3′,5′,9′‐pentamethoxy‐8,4′‐oxyneolign‐7′‐ene ( 3 ), and one new phenylpropanoid, threo‐5‐hydroxy‐3,7‐dimethoxyphenylpropane‐8,9‐diol ( 4 ), were isolated from the leaves and stems of Toona ciliata var. pubescens. Their structures were determined on the basis of spectroscopic analysis, especially 2D‐NMR, HR‐ESI‐MS, and CD data. The antiproliferative activities of these compounds against four tumor cell lines (A549, Colo 205, QGY‐7703, and LOVO) were also evaluated by MTT (=(3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) method.  相似文献   

18.
In the Diels–Alder reaction, the preferred addition of dienes syn to the O atom in cross‐conjugated cyclo­hexadienones containing an oxa‐­spiro ring system is observed. The two structures reported here, namely rel‐(1R,4aR,9S,9aS,10R)‐4a,9,9a,10‐tetra­hydro‐9,10‐di­phenyl­spiro­[9,10‐epoxy­anthra­cene‐1(4H),2′‐oxiran]‐4‐one, C27H20O3, and rel‐(1R,4aS,9R,9aS,10S)‐4a,9,9a,10‐tetra­hydro‐9,10‐di­phenyl­spiro­[9,10‐epoxy­anthracene‐1(4H),2′‐oxetane]‐4‐one, C28H22O3, are the minor and sole products, respectively, of the reactions of di­phenyl­isobenzo­furan with two slightly different cyclo­hexadienones. These structures differ in the size of the oxa‐­spiro ring, by one C atom, and in the relative configuration at the spiro­cyclic ring C atom, leading to some minor conformational differences between the two compounds.  相似文献   

19.
A new iridoid glycoside, methyl (3R,4R,4aS,7S,7aR)‐3‐hydroxy‐7‐methyl‐5‐oxooctahydrocyclopenta[c]pyran‐4‐carboxylate‐3‐O‐β‐d ‐(1′S,2′R,3′S,4′S,5′R)‐glucopyranoside, named loniceroside A, C17H26O10, ( 1 ), was obtained from the aerial parts of Lonicera saccata. Its structure was established based on an analysis of spectroscopic data, including 1D NMR, 2D NMR and HRESIMS, and the configurations of the chiral C atoms were determined by X‐ray crystallographic analysis. The single‐crystal structure reveals that the cyclopenta[c]pyran scaffold is formed from a five‐membered ring and a chair‐like six‐membered ring connected through two bridgehead chiral C atoms. In the solid state, the glucose group of ( 1 ) plays an important role in constructing an unusual supramolecular motif. The structure analysis revealed adjacent molecules linked together through intermolecular O—H…O hydrogen bonds to generate a banded structure. Furthermore, the banded structures are linked into a three‐dimensional network by interesting hydrogen bonds. Biogenetically, compound ( 1 ) carries a glucopyranosyloxy moiety at the C‐3 position, representing a rare structural feature for naturally occurring iridoid glycosides. The growth inhibitory effects against human cervical carcinoma cells (Hela), human lung adenocarcinoma cells (A549), human acute mononuclear granulocyte leukaemia (THP‐1) and the human liver hepatocellular carcinoma cell line (HepG2) were evaluated by the MTT method.  相似文献   

20.
The fungal metabolite (+)‐geodin [systematic name: (2R)‐methyl 5,7‐dichloro‐4‐hydroxy‐6′‐methoxy‐6‐methyl‐3,4′‐dioxospiro[benzofuran‐2,1′‐cyclohexa‐2′,5′‐diene]‐2′‐carboxylate], C17H12Cl2O7, was isolated from Aspergillus terreus. The crystal structure contains two independent molecules in the asymmetric unit. Molecules denoted 1 interact through O—H...O hydrogen bonds creating chains of molecules parallel to the crystallographic 21 screw axis. Molecules denoted 2 interact through an O...Cl halogen bond, also creating chains of molecules parallel to the crystallographic 21 screw axis. Molecules 1 and 2 interact through another O...Cl halogen bond. The two molecules are similar but molecules 2 have a slightly more planar cyclohexadiene ring than molecules 1. The absolute structure of (+)‐geodin has been unequivocally assigned with the spiro centre having the R configuration in both molecules. The structurally related (+)‐griseofulvin has an S configuration at the spiro centre, a difference of potential biological and biosynthetic relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号