首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compounds, (9‐fluoro‐4H‐chromeno[4,3‐c]isoxazol‐3‐yl)methanol, C11H8FNO3, (I), and (9‐chloro‐4H‐chromeno[4,3‐c]isoxazol‐3‐yl)methanol, C11H8ClNO3, (II), crystallize in the orthorhombic space group Pbca with Z′ = 1 and the triclinic space group P with Z′ = 6, respectively. The simple replacement of F by Cl in the main molecular scaffold of (I) and (II) results in significant differences in the intermolecular interaction patterns and a corresponding change in the point‐group symmetry from D2h to Ci = S2. These striking differences are manifested through the presence of C—H...F and the absence of O—H...O and C—H...O interactions in (I), and the absence of C—H...Cl and the presence of O—H...O and C—H...O interactions in (II). However, the geometry of the synthons formed by the O—H...N and O—H...X (X = F or Cl) interactions observed in the constitution of the supramolecular networks of both (I) and (II) remains similar. Also, C—H...O interactions are not preferred in the presence of F in (I), while they are much preferred in the presence of Cl in (II).  相似文献   

2.
Aminopyrimidine derivatives are biologically important as they are components of nucleic acids and drugs. The crystals of two new salts, namely cytosinium 6‐chloronicotinate monohydrate, C4H6N3O+·C6H3ClNO2·H2O, ( I ), and 5‐bromo‐6‐methylisocytosinium hydrogen sulfate (or 2‐amino‐5‐bromo‐4‐oxo‐6‐methylpyrimidinium hydrogen sulfate), C5H7BrN3O+·HSO4, ( II ), have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine ring of both compounds is protonated at the imine N atom. In hydrated salt ( I ), the primary R22(8) ring motif (supramolecular heterosynthon) is formed via a pair of N—H…O(carboxylate) hydrogen bonds. The cations, anions and water molecule are hydrogen bonded through N—H…O, N—H…N, O—H…O and C—H…O hydrogen bonds, forming R22(8), R32(7) and R55(21) motifs, leading to a hydrogen‐bonded supramolecular sheet structure. The supramolecular double sheet structure is formed via water–carboxylate O—H…O hydrogen bonds and π–π interactions between the anions and the cations. In salt ( II ), the hydrogen sulfate ions are linked via O—H…O hydrogen bonds to generate zigzag chains. The aminopyrimidinium cations are embedded between these zigzag chains. Each hydrogen sulfate ion bridges two cations via pairs of N—H…O hydrogen bonds and vice versa, generating two R22(8) ring motifs (supramolecular heterosynthon). The cations also interact with one another via halogen–halogen (Br…Br) and halogen–oxygen (Br…O) interactions.  相似文献   

3.
In the title compounds, 4‐carboxyanilinium bromide, C7H8NO2+·Br, (I), and 4‐acetylanilinium bromide, C8H10NO+·Br, (II), each asymmetric unit contains a discrete cation with a protonated amino group and a halide anion. Both crystal structures are characterized by two‐dimensional hydrogen‐bonded networks. The ions in (I) are connected via N—H...Br, N—H...O and O—H...Br hydrogen bonds, with three characteristic graph‐set motifs, viz. C(8), C21(4) and R32(8). The centrosymmetric hydrogen‐bonded R22(8) dimer motif characteristic of carboxylic acids is absent. The ions in (II) are connected via N—H...Br and N—H...O hydrogen bonds, with two characteristic graph‐set motifs, viz. C(8) and R42(8). The significance of this study lies in its illustration of the differences between the supramolecular aggregations in two similar compounds. The presence of the methyl group in (II) at the site corresponding to the hydroxyl group in (I) results in a significantly different hydrogen‐bonding arrangement.  相似文献   

4.
In the title compounds, C10H8N2O2, (I), and C12H12N2O2, (II), the two carbonyl groups are oriented with torsion angles of −149.3 (3) and −88.55 (15)°, respectively. The single‐bond distances linking the two carbonyl groups are 1.528 (4) and 1.5298 (17) Å, respectively. In (I), the molecules are linked by an elaborate system of N—H...O hydrogen bonds, which form adjacent R22(8) and R42(8) ring motifs to generate a ladder‐like construct. Adjacent ladders are further linked by N—H...O hydrogen bonds to build a three‐dimensional network. The hydrogen bonding in (II) is far simpler, consisting of helical chains of N—H...O‐linked molecules that follow the 21 screw of the b axis. It is the presence of an elaborate hydrogen‐bonding system in the crystal structure of (I) that leads to the different torsion angle for the orientation of the two adjacent carbonyl groups from that in (II).  相似文献   

5.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

6.
In order to study the preferred hydrogen‐bonding pattern of 6‐amino‐2‐thiouracil, C4H5N3OS, (I), crystallization experiments yielded five different pseudopolymorphs of (I), namely the dimethylformamide disolvate, C4H5N3OS·2C3H7NO, (Ia), the dimethylacetamide monosolvate, C4H5N3OS·C4H9NO, (Ib), the dimethylacetamide sesquisolvate, C4H5N3OS·1.5C4H9NO, (Ic), and two different 1‐methylpyrrolidin‐2‐one sesquisolvates, C4H5N3OS·1.5C5H9NO, (Id) and (Ie). All structures contain R21(6) N—H...O hydrogen‐bond motifs. In the latter four structures, additional R22(8) N—H...O hydrogen‐bond motifs are present stabilizing homodimers of (I). No type of hydrogen bond other than N—H...O is observed. According to a search of the Cambridge Structural Database, most 2‐thiouracil derivatives form homodimers stabilized by an R22(8) hydrogen‐bonding pattern, with (i) only N—H...O, (ii) only N—H...S or (iii) alternating pairs of N—H...O and N—H...S hydrogen bonds.  相似文献   

7.
Both the 1:1 and 2:1 molecular adducts of 4‐methylimidazole (4‐MeIm) and terephthalic acid (H2TPA) are organic salts, viz. C4H7N2+·C8H5O4, (I), and 2C4H7N2+·C8H4O42−, (II), respectively. The component ions in (I) are linked by N—H...O and O—H...O hydrogen bonds into continuous two‐dimensional layers built from R64(32) hydrogen‐bond motifs running parallel to the (100) plane. These adjacent two‐dimensional layers are in turn linked by a combination of C—H...O, C—H...π and π–π interactions into a three‐dimensional network. In the crystal structure of (II), with the anion located on an inversion centre, only N—H...O hydrogen bonds result in two‐dimensional layers built from R88(42) hydrogen‐bond motifs running parallel to the (102) plane. Being similar to those in (I), these layers are also linked by means of C—H...O, C—H...π and π–π interactions, forming a three‐dimensional network. This study indicates that, on occasion, a change of the reactant concentration can exert a pivotal influence on the construction of supramolecular structures based on hydrogen bonds.  相似文献   

8.
9.
In 2,4‐diamino‐6‐methyl‐1,3,5‐triazin‐1‐ium (acetoguanaminium) hydrogen phthalate, C4H8N5+·C8H5O4, (I), acetoguanaminium hydrogen maleate, C4H8N5+·C4H3O4, (II), and acetoguanaminium 3‐hydroxypicolinate monohydrate, C4H8N5+·C6H4NO3·H2O, (III), the acetoguanaminium cations interact with the carboxylate groups of the corresponding anions via a pair of nearly parallel N—H...O hydrogen bonds, forming R22(8) ring motifs. In (II) and (III), N—H...N base‐pairing is observed, while there is none in (I). In (II), a series of fused R32(8), R22(8) and R32(8) hydrogen‐bonded rings plus fused R22(8), R62(12) and R22(8) ring motifs occur alternately, aggregating into a supramolecular ladder‐like arrangement. In (III), R22(8) motifs occur on either side of a further ring formed by pairs of N—H...O hydrogen bonds, forming an array of three fused hydrogen‐bonded rings. In (I) and (II), the anions form a typical intramolecular O—H...O hydrogen bond with graph set S(7), whereas in (III) an intramolecular hydrogen bond with graph set S(6) is formed.  相似文献   

10.
The structures of ammonium 3,5‐dinitrobenzoate, NH4+·C7H3N2O6, (I), ammonium 4‐nitrobenzoate dihydrate, NH4+·C7H4NO4·2H2O, (II), and ammonium 2,4‐dichlorobenzoate hemihydrate, NH4+·C7H3Cl2O2·0.5H2O, (III), have been determined and their hydrogen‐bonded structures are described. All three salts form hydrogen‐bonded polymeric structures, viz. three‐dimensional in (I) and two‐dimensional in (II) and (III). With (I), a primary cation–anion cyclic association is formed [graph set R43(10)] through N—H...O hydrogen bonds, involving a carboxylate group with both O atoms contributing to the hydrogen bonds (denoted O,O′‐carboxylate) on one side and a carboxylate group with one O atom involved in two hydrogen bonds (denoted O‐carboxylate) on the other. Structure extension involves N—H...O hydrogen bonds to both carboxylate and nitro O‐atom acceptors. With structure (II), the primary inter‐species interactions and structure extension into layers lying parallel to (001) are through conjoined cyclic hydrogen‐bonding motifs, viz.R43(10) (one cation, an O,O′‐carboxylate group and two water molecules) and centrosymmetric R42(8) (two cations and two water molecules). The structure of (III) also has conjoined R43(10) and centrosymmetric R42(8) motifs in the layered structure but these differ in that the first motif involves one cation, an O,O′‐carboxylate group, an O‐carboxylate group and one water molecule, and the second motif involves two cations and two O‐carboxylate groups. The layers lie parallel to (100). The structures of salt hydrates (II) and (III), displaying two‐dimensional layered arrays through conjoined hydrogen‐bonded nets, provide further illustration of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three‐dimensional structure of (I) is inconsistent with that trend.  相似文献   

11.
In the title compound, C10H9N2+·C9H5INO4S·2H2O, the 4,4′‐bi­pyridine mol­ecule is protonated at one of the pyridine N atoms. These moieties self‐assemble into a supramolecular chain along the a axis through N—H⋯N hydrogen bonds. The quinolinol OH group acts as a donor with respect to a sulfonate O atom [O—H⋯O(sulfonate)] and acts as an acceptor with respect to a C—H group of ferron [C—H⋯O(hydroxy)], forming a supramolecular chain along the b axis. These two types of supramolecular chains (one type made up of bi­pyridine motifs and the other made up of sulfoxine motifs) interact viaπ–π stacking, generating a three‐dimensional framework. These chains are further crosslinked by C—­H⋯O hydrogen bonds and O—H⋯O hydrogen bonds involving water mol­ecules.  相似文献   

12.
In the lattice of the title compound (systematic name: 5,6,7‐trihydroxy‐4′‐meth­oxy­isoflavone monohydrate), C16H12O6·H2O, the isoflavone mol­ecules are linked into chains through R43(17) motifs composed via O—H⋯O and C—H⋯O hydrogen bonds. Centrosymmetric R42(14) motifs assemble the chains into sheets. Hydrogen‐bonding and aromatic π–π stacking inter­actions lead to the formation of a three‐dimensional network structure.  相似文献   

13.
The molecular structure of the title salt, C11H17N4+·H2PO4, has been determined from single‐crystal X‐ray analysis and compared with the structure calculated by density functional theory (DFT) at the BLYP level. The crystal packing in the title compound is stabilized primarily by intermolecular N—H...O, O—H...N and O—H...O hydrogen bonds and π–π stacking interactions, and thus a three‐dimensional supramolecular honeycomb network consisting of R42(10), R44(14) and R44(24) ring motifs is established. The HOMO–LUMO energy gap (1.338 eV; HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied molecular orbital) indicates a high chemical reactivity for the title compound.  相似文献   

14.
The structure of the title compound [systematic name: bis(adamantan‐1‐aminium) tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supramolecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan‐1‐aminium cation and one crown ether molecule (1,4,7,10,13,16‐hexaoxacyclooctadecane) to give an overall [(C10H18N)(18‐crown‐6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown‐ether O atoms through N—H...O hydrogen bonds. The 18‐crown‐6 ring adopts a pseudo‐C3v conformation. The second adamantan‐1‐aminium forms part of ribbons of adamantan‐1‐aminium–water–tetrachloridozincate units which are interconnected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.  相似文献   

15.
Mixtures of 4‐carboxypyridinium perchlorate or 4‐carboxypyridinium tetrafluoroborate and 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) in ethanol and water solution yielded the title supramolecular salts, C6H6NO2+·ClO4·C12H24O6·2H2O and C6H6NO2+·BF4·C12H24O6·2H2O. Based on their similar crystal symmetries, unit cells and supramolecular assemblies, the salts are essentially isostructural. The asymmetric unit in each structure includes one protonated isonicotinic acid cation and one crown ether molecule, which together give a [(C6H6NO2)(18‐crown‐6)]+ supramolecular cation. N—H...O hydrogen bonds between the protonated N atoms and a single O atom of each crown ether result in the 4‐carboxypyridinium cations `perching' on the 18‐crown‐6 molecules. Further hydrogen‐bonding interactions involving the supramolecular cation and both water molecules form a one‐dimensional zigzag chain that propagates along the crystallographic c direction. O—H...O or O—H...F hydrogen bonds between one of the water molecules and the anions fix the anion positions as pendant upon this chain, without further increasing the dimensionality of the supramolecular network.  相似文献   

16.
The 100 K structures of two salts, namely 2‐amino‐1H‐benzimidazolium 3‐phenylpropynoate, C7H8N3+·C9H5O2, (I), and 2‐amino‐1H‐benzimidazolium oct‐2‐ynoate, C7H8N3+·C8H11O2, (II), both have monoclinic symmetry (space group P21/c) and display N—H...O hydrogen bonding. Both structures show packing with corrugated sheets of hydrogen‐bonded molecules lying parallel to the [001] direction. Two hydrogen‐bonded ring motifs can be identified and described with graph sets R22(8) and R44(16), respectively, in both (I) and (II). Computational chemistry calculations performed on both compounds show that the hydrogen‐bonded ion pairs are more energetically favourable in the crystal structure than their hydrogen–bonded neutral molecule counterparts.  相似文献   

17.
The asymmetric unit of the optically resolved title salt, C8H12N+·C4H5O4S, contains a 1‐phenylethanaminium monocation and a thiomalate (3‐carboxy‐2‐sulfanylpropanoate) monoanion. The absolute configurations of the cation and the anion are determined to be S and R, respectively. In the crystal, cation–anion N—H...O hydrogen bonds, together with anion–anion O—H...O and S—H...O hydrogen bonds, construct a two‐dimensional supramolecular sheet parallel to the ab plane. The two‐dimensional sheet is linked with the upper and lower sheets through C—H...π interactions to stack along the c axis.  相似文献   

18.
Details of the structures of two conformational polymorphs of the title compound, C12H17N2OS+·Cl, are reported. In form (I) (space group P), the two N—H groups of the cation are in a trans conformation, while in form (II) (space group P21/c), they are in a cis arrangement. This results in different packing and hydrogen‐bond arrangements in the two forms, both of which have extended chains lying along the a direction. In form (I), these chains are composed of centrosymmetric R42(18) (N—H...Cl and O—H...Cl) hydrogen‐bonded rings and R22(18) (N—H...O) hydrogen‐bonded rings. In form (II), the chains are formed by centrosymmetric R42(18) (N—H...Cl and O—H...Cl) hydrogen‐bonded rings and by R42(12) (N—H...Cl) hydrogen‐bonded rings.  相似文献   

19.
In the title compounds, C7H8NO2+·Br, (I), and C7H8NO2+·I, (II), the asymmetric unit contains a discrete 3‐carboxyanilinium cation, with a protonated amine group, and a halide anion. The compounds are not isostructural, and the crystal structures of (I) and (II) are characterized by different two‐dimensional hydrogen‐bonded networks. The ions in (I) are connected into ladder‐like ribbons via N—H...Br hydrogen bonds, while classic cyclic O—H...O hydrogen bonds between adjacent carboxylic acid functions link adjacent ribbons to give three characteristic graph‐set motifs, viz. C21(4), R42(8) and R22(8). The ions in (II) are connected via N—H...I, N—H...O and O—H...I hydrogen bonds, also with three characteristic graph‐set motifs, viz. C(7), C21(4) and R42(18), but an O—H...O interaction is not present.  相似文献   

20.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号