首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The cation of the title structure [systematic name: (5α,6α)‐6‐hydroxy‐7,8‐didehydro‐4,5‐epoxy‐3‐methoxy‐17‐methylmorphinanium dihydrogen phosphate hemihydrate], C18H22NO3+·H2PO4·0.5H2O, has a T‐shaped conformation. The dihydrogen phosphate anions are linked by O—H...O hydrogen bonds to give an extended ribbon chain. The codeine cations are linked together by O—H...O hydrogen bonds into a zigzag chain. There are also N—H...O bonds between the two types of hydrogen‐bonded units. Addditionally, they are connected to one another via O...H—O—H...O bridging water molecules. The asymmetric unit contains two codeine hydrogen cations, two dihydrogen phosphate anions and one water molecule. This study shows that the water molecules are firmly bound within a complex three‐dimensional hydrogen‐bonded framework.  相似文献   

2.
The title compounds, 2‐chloroanilinium dihydrogen phosphate (2CADHP) and 4‐chloroanilinium dihydrogen phosphate (4CADHP), both C6H7NCl+·H2PO4, form two‐dimensional supramolecular organic–inorganic hybrid frameworks. In 2CADHP, the dihydrogen phosphate anions form a double‐stranded anionic chain generated parallel to the [010] direction through O—H...O hydrogen bonds, whereas in 4CADHP they form a two‐dimensional supramolecular net extending parallel to the crystallographic (001) plane into which the cations are linked through strong N—H...O hydrogen bonds.  相似文献   

3.
In the salt 1‐methylpiperazine‐1,4‐diium bis(dihydrogen phosphate), C5H13N22+·2H2PO4, (I), and the solvated salt 2‐(pyridin‐2‐yl)pyridinium dihydrogen phosphate–orthophosphoric acid (1/1), C10H9N2+·H2PO4·H3PO4, (II), the formation of O—H...O and N—H...O hydrogen bonds between the dihydrogen phosphate (H2PO4) anions and the cations constructs a three‐ and two‐dimensional anionic–cationic network, respectively. In (I), the self‐assembly of H2PO4 anions forms a two‐dimensional pseudo‐honeycomb‐like supramolecular architecture along the (010) plane. 1‐Methylpiperazine‐1,4‐diium cations are trapped between the (010) anionic layers through three N—H...O hydrogen bonds. In solvated salt (II), the self‐assembly of H2PO4 anions forms a two‐dimensional supramolecular architecture with open channels projecting along the [001] direction. The 2‐(pyridin‐2‐yl)pyridinium cations are trapped between the open channels by N—H...O and C—H...O hydrogen bonds. From a study of previously reported structures, dihydrogen phosphate anions show a supramolecular flexibility depending on the nature of the cations. The dihydrogen phosphate anion may be suitable for the design of the host lattice for host–guest supramolecular systems.  相似文献   

4.
The title compound, [Ni2(C8H4O4)(C10H24N4)2(H2O)2](ClO4)2, contains two independent octahedral NiII centres with trans‐NiN4O2 chromophores. The bridging benzene­dicarboxyl­ate ligand is bonded to the two Ni atoms, each via one O atom of each carboxyl­ate, while the other O atom participates in an intramolecular N—H?O hydrogen bond, forming an S(6) motif. The cations are linked to the perchlorate anions via O—H?O and N—H?O hydrogen bonds [O?O 2.904 (6) and 2.898 (6) Å; O—H?O 158 (6) and 165 (6)°; N?O 3.175 (7) and 3.116 (7) Å; N—H?O 168 and 166°] to form molecular ladders. These ladders are linked by further O—H?O and N—H?O hydrogen bonds [O?O 2.717 (6) and 2.730 (5) Å; O—H?O 170 (4) and 163 (6)°; N?O 3.373 (7) and 3.253 (7) Å; N—H?O 163 and 167°] to form a continuous three‐dimensional framework. The perchlorate anions both participate in three hydrogen bonds, and both are thus fully ordered.  相似文献   

5.
The title salt, C13H12N3+·H2PO4, contains a nonplanar 2‐(2‐aminophenyl)‐1H‐benzimidazol‐3‐ium cation and two different dihydrogen phosphate anions, both situated on twofold rotation axes in the space group C2. The anions are linked by O—H...O hydrogen bonds into chains of R22(8) rings. The anion chains are linked by the cations, via hydrogen‐bonding complementarities and electrostatic interactions, giving rise to a sheet structure with alternating rows of organic cations and inorganic anions. Comparison of this structure with that of the pure amine reveals that the two compounds generate characteristically different sheet structures. The anion–anion chain serves as a template for the assembly of the cations, suggesting a possible application in the design of solid‐state materials.  相似文献   

6.
Crystals of the title compounds, namely 1‐(diaminomethylene)thiouron‐1‐ium perchlorate, C2H7N4S+·ClO4, 1‐(diaminomethylene)thiouron‐1‐ium hydrogen sulfate, C2H7N4S+·HSO4, 1‐(diaminomethylene)thiouron‐1‐ium dihydrogen phosphate, C2H7N4S+·H2PO4, and its isomorphic relative 1‐(diaminomethylene)thiouron‐1‐ium dihydrogen arsenate, C2H7N4S+·H2AsO4, are built up from a nonplanar 1‐(diaminomethylene)thiouron‐1‐ium cation and the respective anion linked together via N—H...O hydrogen bonds. Both arms of the cation are planar, but they are twisted with respect to one another around the central N atom. Ionic and extensive hydrogen‐bonding interactions join oppositely charged units into layers in the perchlorate, double layers in the hydrogen sulfate, and a three‐dimensional network in the dihydrogen phosphate and dihydrogen arsenate salts. This work demonstrates the usefulness of 1‐(diaminomethylene)thiourea in crystal engineering for the formation of supramolecular networks with acids.  相似文献   

7.
The structure of [Co(H2O)4][VO(PO4)]2 is composed of [VO(PO4)] layers and interlayer tetrahydrated Co2+ ions. Alternating VO5 square pyramids and PO4 tetrahedra share O‐atom vertices, thus forming the vanadyl phosphate layers. Two vanadyl oxo groups from neighbouring layers are coordinated to each Co atom in a trans fashion, with Co—O distances of 2.157 (4) Å, thus generating a three‐dimensional framework structure.  相似文献   

8.
In the title compounds, namely 3‐acetylanilinium bromide, C8H10NO+·Br, (I), 3‐acetylanilinium nitrate, C8H10NO+·NO3, (II), and 3‐acetylanilinium dihydrogen phosphate, C8H10NO+·H2PO4, (III), each asymmetric unit contains a discrete cation, with a protonated amino group, and an anion. In the crystal structure of (I), the ions are connected via N—H...Br and N—H...O hydrogen bonds into a chain of spiro‐fused R22(14) and R24(8) rings. In compound (II), the non‐H atoms of the cation all lie on a mirror plane in the space group Pnma, while the nitrate ion lies across a mirror plane. The crystal structures of compounds (II) and (III) are characterized by hydrogen‐bonded networks in two and three dimensions, respectively. The ions in (II) are connected via N—H...O hydrogen bonds, with three characteristic graph‐set motifs, viz.C22(6), R21(4) and R46(14). The ions in (III) are connected via N—H...O and O—H...O hydrogen bonds, with five characteristic graph‐set motifs, viz.D, C(4), C12(4), R33(10) and R44(12). The significance of this study lies in its illustration of the differences between the supramolecular aggregations in the bromide, nitrate and dihydrogen phosphate salts of a small organic molecule. The different geometry of the counter‐ions and their different potential for hydrogen‐bond formation result in markedly different hydrogen‐bonding arrangements.  相似文献   

9.
The title compound, [Cd(C3H6NO5P)(H2O)2]n, is a three‐dimensional polymeric complex. The asymmetric unit contains one Cd atom, one N‐(phosphono­methyl)glycine zwitterion [(O)2OPCH2NH2+CH2COO] and two water mol­ecules. The coordination geometry is a distorted CdO6 octa­hedron. Each N‐(phosphono­methyl)glycine ligand bridges four adjacent water‐coordinated Cd cations through three phospho­nate O atoms and one carboxyl­ate O atom, like a regular PO43− group in zeolite‐type frameworks. One‐dimensional zigzag (–O—P—C—N—C—C—O—Cd–)n chains along the [101] direction are linked to one another via Cd—O—P bridges and form a three‐dimensional network motif with three types of channel systems. The variety of O—H⋯O and N—H⋯O hydrogen bonds is likely to be responsible for stabilizing the three‐dimensional network structure and preventing guest mol­ecules from entering into the channels.  相似文献   

10.
4‐Amino‐trans‐azobenzene {or 4‐[(E)‐phenyl­diazen­yl]aniline} can form isomeric salts depending on the site of protonation. Both orange bis{4‐[(E)‐phenyl­diazen­yl]anilinium} hydrogen phos­phate, 2C12H12N3+·HPO42−, and purple 4‐[(E)‐phenyl­diazen­yl]­anilinium dihydrogen phosphate phosphoric acid solvate, C12H12N3+·H2PO4·H3PO4, (II), have layered structures formed through O—H⋯O and N—H⋯O hydrogen bonds. Additionally, azobenzene fragments in (I) are assembled through C—H⋯π inter­actions and in (II) through π–π inter­actions. Arguments for the colour difference are tentatively proposed.  相似文献   

11.
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions.  相似文献   

12.
Both title compounds are derivatives of salicylic acid. 5‐Formylsalicylic acid (systematic name: 5‐formyl‐2‐hydroxybenzoic acid), C8H6O4, possesses three good hydrogen‐bond donors and/or acceptors coplanar with their attached benzene ring and abides very well by Etter's hydrogen‐bond rules. Intermolecular O—H...O and some weak C—H...O hydrogen bonds link the molecules into a planar sheet. Reaction of this acid and o‐phenylenediamine in refluxing ethanol produced in high yield the new zwitterionic compound 5‐(benzimidazolium‐2‐yl)salicylate [systematic name: 5‐(1H‐benzimidazol‐3‐ium‐2‐yl)‐2‐hydroxybenzoate], C14H10N2O3. Each imidazolium N—H group and its adjacent salicyl C—H group chelate one carboxylate O atom via hydrogen bonds, forming seven‐membered rings. As a result of steric hindrance, the planes of the molecules within these pairs of hydrogen‐bonded molecules are inclined to one another by ∼74°. There are also π–π stacking interactions between the parallel planes of the imidazole ring and the benzene ring of the salicyl component of the adjacent molecule on one side and the benzimidazolium component of the molecule on the other side.  相似文献   

13.
The structure of the title compound, ammineaquadi‐μ5‐phosphato‐trizinc(II), [Zn3(PO4)2(H2O)0.8(NH3)1.2], consists of two parts: (i) PO4 and ZnO4 vertex‐sharing tetrahedra arranged in layers parallel to (100) and (ii) ZnO2(N/O)2 tetrahedra located between the layers. Elemental analysis establishes the ammine‐to‐water ratio as 3:2. ZnO2(N/O)2 tetrahedra are located at special position 4e (site symmetry 2) in C2/c. The two O atoms of ZnO2(N/O)2 are bonded to neighbouring P atoms, forming two Zn—O—P linkages and connecting ZnO2(N/O)2 tetrahedra with two adjacent bc plane layers. A noteworthy feature of the structure is the presence of NH3 and H2O at the same crystallographic position and, consequently, qualitative changes in the pattern of hydrogen bonding and weaker N/O—H...O electrostatic interactions, as compared to two closely related structures.  相似文献   

14.
The title compounds, di‐μ‐bromido‐bis[bromido(1‐carboxymethyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane‐κN4)(nitrito‐κ2O,O′)cadmium(II)] dihydrate, [Cd2Br4(C8H15N2O2)2(NO2)2]·2H2O, (I), and aquabromido(1‐cyanomethyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane‐κN4)bis(nitrito‐κ2O,O′)cadmium(II) monohydrate, [CdBr(C8H14N3)(NO2)2(H2O)]·H2O, (II), are two‐dimensional hydrogen‐bonded metal–organic hybrid complexes. In (I), the complex is situated on a centre of inversion so that each symmetry‐related CdII atom is coordinated by two bridging Br atoms, one monodentate Br atom, one chelating nitrite ligand and one organic ligand, yielding a significantly distorted octahedral geometry. The combination of O—H...O and O—H...Br hydrogen bonds produces centrosymmetric R66(16) ring motifs, resulting in two‐dimensional layers parallel to the ab plane. In contrast, the complex molecule in (II) is mononuclear, with the CdII atom seven‐coordinated by two bidentate nitrite groups, one N atom from the organic ligand, one monodentate Br atom and a water O atom in a distorted pentagonal–bipyramidal environment. The combination of O—H...O and O—H...Br hydrogen bonds produces R54(14) and R33(8) rings which lead to two‐dimensional layers parallel to the ac plane.  相似文献   

15.
In xanthinium nitrate hydrate [systematic name: 2,6‐dioxo‐1,2,3,6‐tetrahydro‐9H‐purin‐7‐ium nitrate monohydrate], C5H5N4O2+·NO3·H2O, (I), and xanthinium hydrogen sulfate hydrate [systematic name: 2,6‐dioxo‐1,2,3,6‐tetrahydro‐9H‐purin‐7‐ium hydrogen sulfate monohydrate], C5H5N4O2+·HSO4·H2O, (II), the xanthine molecules are protonated at the imine N atom with the transfer of an H atom from the inorganic acid. The asymmetric unit of (I) contains a xanthinium cation, a nitrate anion and one water molecule, while that of (II) contains two crystallographically independent xanthinium cations, two hydrogen sulfate anions and two water molecules. A pseudo‐quadruple hydrogen‐bonding motif is formed between the xanthinium cations and the water molecules via N—H...O and O—H...O hydrogen bonds in both structures, and leads to the formation of one‐dimensional polymeric tapes. These cation–water tapes are further connected by the respective anions and aggregate into two‐dimensional hydrogen‐bonded sheets in (I) and three‐dimensional arrangements in (II).  相似文献   

16.
The title compound, C2H7N4O+·CH4O3P·H2O, crystallized with one carbamoyl­guanidinium cation, one methyl­phos­phonate anion and one water mol­ecule in the asymmetric unit. All H atoms of the carbamoyl­guanidinium ion are involved in a hydrogen‐bonded network. The CH3PO2(OH) anions, together with the water mol­ecules, build O—H⋯O hydrogen‐bonded ribbons around a 21 screw axis parallel to the b axis. Neighbouring ribbons are not directly connected via hydrogen bonding. The carbamoyl­guanidinium cations are linked to these ribbons by N—H⋯O bridges and build a slightly buckled layer structure, the interlayer distance being b/2.  相似文献   

17.
The title compound, 2‐hydroxy­phenyl 5‐(pyrrol‐2‐yl)‐3H‐pyrrolizin‐6‐yl ketone, C18H14N2O2, was isolated from the base‐catalyzed 1:2 condensation of 2‐hydroxy­aceto­phenone with pyrrole‐2‐carbaldehyde. The pyrrole N—H and hydroxy­benzoyl O—H groups are hydrogen bonded to the benzoyl O atom. The allyl­ic C=C double bond of the 3H‐pyrrolizine system is located between ring positions 1 and 2, the C atom at position 3 (adjacent to the N atom) being single bonded.  相似文献   

18.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

19.
In the crystal structure of the title two‐dimensional metal–organic polymeric complex, [Cd2Cl4(C8H14N2O4)(H2O)2]n, the asymmetric unit contains a crystallographically independent CdII cation, two chloride ligands, an aqua ligand and half a 2,2′‐(piperazine‐1,4‐diium‐1,4‐diyl)diacetate (H2PDA) ligand, the piperazine ring centroid of which is located on a crystallographic inversion centre. Each CdII centre is six‐coordinated in an octahedral environment by an O atom from an H2PDA ligand and an O atom from an aqua ligand in a trans disposition, and by four chloride ligands arranged in the plane perpendicular to the O—Cd—O axis. The complex forms a two‐dimensional layer polymer containing [CdCl2]n chains, which are interconnected into an extensive three‐dimensional hydrogen‐bonded network by C—H...O, C—H...Cl and O—H...O hydrogen bonds.  相似文献   

20.
Aminopyrimidine derivatives are biologically important as they are components of nucleic acids and drugs. The crystals of two new salts, namely cytosinium 6‐chloronicotinate monohydrate, C4H6N3O+·C6H3ClNO2·H2O, ( I ), and 5‐bromo‐6‐methylisocytosinium hydrogen sulfate (or 2‐amino‐5‐bromo‐4‐oxo‐6‐methylpyrimidinium hydrogen sulfate), C5H7BrN3O+·HSO4, ( II ), have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine ring of both compounds is protonated at the imine N atom. In hydrated salt ( I ), the primary R22(8) ring motif (supramolecular heterosynthon) is formed via a pair of N—H…O(carboxylate) hydrogen bonds. The cations, anions and water molecule are hydrogen bonded through N—H…O, N—H…N, O—H…O and C—H…O hydrogen bonds, forming R22(8), R32(7) and R55(21) motifs, leading to a hydrogen‐bonded supramolecular sheet structure. The supramolecular double sheet structure is formed via water–carboxylate O—H…O hydrogen bonds and π–π interactions between the anions and the cations. In salt ( II ), the hydrogen sulfate ions are linked via O—H…O hydrogen bonds to generate zigzag chains. The aminopyrimidinium cations are embedded between these zigzag chains. Each hydrogen sulfate ion bridges two cations via pairs of N—H…O hydrogen bonds and vice versa, generating two R22(8) ring motifs (supramolecular heterosynthon). The cations also interact with one another via halogen–halogen (Br…Br) and halogen–oxygen (Br…O) interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号