首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of five binary complexes, i.e. three cocrystals and two molecular salts, using 2‐chloro‐4‐nitrobenzoic acid as a coformer have been produced with five commonly available compounds, some of pharmaceutical relevance, namely, 2‐chloro‐4‐nitrobenzoic acid–isonicotinamide (1/1), C7H4ClNO4·C6H6N2O, 2‐chloro‐4‐nitrobenzoic acid–3,3‐diethylpyridine‐2,4(1H,3H)‐dione (2/1), 2C7H4ClNO4·C9H13NO2, 2‐chloro‐4‐nitrobenzoic acid–pyrrolidin‐2‐one (1/1), C7H4ClNO4·C4H7NO, 2‐carboxypiperidinium 2‐chloro‐4‐nitrobenzoate, C6H12NO2?·C7H3ClNO4?, and (2‐hydroxyethyl)ammonium 2‐chloro‐4‐nitrobenzoate, C2H8NO+·C7H3ClNO4?. The coformer falls under the classification of a `generally regarded as safe' compound. All five complexes make use of a number of different heteromeric hydrogen‐bonded interactions. Intermolecular potentials were evaluated using the CSD‐Materials module.  相似文献   

2.
Six closely related N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]arylamides have been synthesized and structurally characterized, together with a representative reaction intermediate. In each of N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]benzamide, C20H16ClNO2S, (I), N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐4‐phenylbenzamide, C26H20ClNO2S, (II), and 2‐bromo‐N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]benzamide, C20H15BrClNO2S, (III), the molecules are disordered over two sets of atomic sites, with occupancies of 0.894 (8) and 0.106 (8) in (I), 0.832 (5) and 0.168 (5) in (II), and 0.7006 (12) and 0.2994 (12) in (III). In each of N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2‐iodobenzamide, C20H15ClINO2S, (IV), and N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2‐methoxybenzamide, C21H18ClNO3S, (V), the molecules are fully ordered, but in N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2,6‐difluorobenzamide, C20H14ClF2NO2S, (VI), which crystallizes with Z′ = 2 in the space group C2/c, one of the two independent molecules is fully ordered, while the other is disordered over two sets of atomic sites having occupancies of 0.916 (3) and 0.084 (3). All of the molecules in compounds (I)–(VI) exhibit an intramolecular N—H…O hydrogen bond. The molecules of (I) and (VI) are linked by C—H…O hydrogen bonds to form finite zero‐dimensional dimers, which are cyclic in (I) and acyclic in (VI), those of (III) are linked by C—H…π(arene) hydrogen bonds to form simple chains, and those of (IV) and (V) are linked into different types of chains of rings, built in each case from a combination of C—H…O and C—H…π(arene) hydrogen bonds. Two C—H…O hydrogen bonds link the molecules of (II) into sheets containing three types of ring. In benzotriazol‐1‐yl 3,4‐dimethoxybenzoate, C15H13N3O4, (VII), the benzoate component is planar and makes a dihedral angle of 84.51 (6)° with the benzotriazole unit. Comparisons are made with related compounds.  相似文献   

3.
The crystal structures of the first stable α‐diol from the α‐halogenopyruv­amide series, 3‐chloro‐2,2‐di­hydroxy‐3‐phenyl­propan­amide, C9H10­ClNO3, and three products [3‐(4‐chloro­phenyl)‐2‐cyano‐2,3‐epoxy­propan­amide, C10H7­ClN2O2, 3‐bromo‐2‐cyano‐2‐hydroxy‐3‐p‐tolyl­propan­amide, C11H11Br­N2O2, 3‐bromo‐2‐oxo‐3‐p‐tolyl­propan­amide, C10H10­BrNO2] obtained during the systematic synthesis of α‐halogenopyruv­amides are reported. The crystal structures are dominated by hydrogen bonds involving an amide group. The stability of the geminal diol could be ascribed to hydrogen bonds which involve both hydroxyl groups.  相似文献   

4.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

5.
Yellow–orange tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) dihydrate, [Cd(C8HN4O2)2(H2O)4]·2H2O, (I), and yellow tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) 1,4‐dioxane solvate, [Cd(C8HN4O2)2(H2O)4]·C4H8O2, (II), contain centrosymmetric mononuclear Cd2+ coordination complex molecules in different conformations. Dark‐red poly[[decaaquabis(μ2‐3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κ2N:N′)bis(μ2‐3‐cyano‐4‐dicyanomethylene‐1H‐pyrrole‐2,5‐diolato‐κ2N:N′)tricadmium] hemihydrate], [Cd3(C8HN4O2)2(C8N4O2)2(H2O)10]·0.5H2O, (III), has a polymeric two‐dimensional structure, the building block of which includes two cadmium cations (one of them located on an inversion centre), and both singly and doubly charged anions. The cathodoluminescence spectra of the crystals are different and cover the wavelength range from UV to red, with emission peaks at 377 and 620 nm for (III), and at 583 and 580 nm for (I) and (II), respectively.  相似文献   

6.
J147 [N‐(2,4‐dimethylphenyl)‐2,2,2‐trifluoro‐N′‐(3‐methoxybenzylidene)acetohydrazide] has recently been reported as a promising new drug for the treatment of Alzheimer's disease. The X‐ray structures of seven new 1,4‐diaryl‐5‐trifluoromethyl‐1H‐1,2,3‐triazoles, namely 1‐(3,4‐dimethylphenyl)‐4‐phenyl‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C17H14F3N3, 1 ), 1‐(3,4‐dimethylphenyl)‐4‐(3‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H16F3N3O, 2 ), 1‐(3,4‐dimethylphenyl)‐4‐(4‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H16F3N3O, 3 ), 1‐(2,4‐dimethylphenyl)‐4‐(4‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H16F3N3O, 4 ), 1‐[2,4‐bis(trifluoromethyl)phenyl]‐4‐(3‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H10F9N3O, 5 ), 1‐(3,4‐dimethoxyphenyl)‐4‐(3,4‐dimethoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C19H18F3N3O4, 6 ) and 3‐[4‐(3,4‐dimethoxyphenyl)‐5‐(trifluoromethyl)‐1H‐1,2,3‐triazol‐1‐yl]phenol (C17H14F3N3O3, 7 ), have been determined and compared to that of J147 . B3LYP/6‐311++G(d,p) calculations have been performed to determine the potential surface and molecular electrostatic potential (MEP) of J147 , and to examine the correlation between hydrazone J147 and the 1,2,3‐triazoles, both bearing a CF3 substituent. Using MEPs, it was found that the minimum‐energy conformation of 4 , which is nearly identical to its X‐ray structure, is closely related to one of the J147 seven minima.  相似文献   

7.
2‐Amino‐4‐chloro‐5‐formyl‐6‐[methyl(2‐methylphenyl)amino]pyrimidine, C13H13ClN4O, (I), and 2‐amino‐4‐chloro‐5‐formyl‐6‐[(2‐methoxyphenyl)methylamino]pyrimidine, C13H13ClN4O2, (II), are isostructural and essentially isomorphous. Although the pyrimidine rings in each compound are planar, the ring‐substituent atoms show significant displacements from this plane, and the bond distances provide evidence for polarization of the electronic structures. In each compound, a combination of N—H...N and N—H...O hydrogen bonds links the molecules into sheets built from centrosymmetric R22(8) and R66(32) rings. The significance of this study lies in its observation of the isostructural nature of (I) and (II), and in the comparison of their crystal and molecular structures with those of analogous compounds.  相似文献   

8.
The revived interest in halogen bonding as a tool in pharmaceutical cocrystals and drug design has indicated that cyano–halogen interactions could play an important role. The crystal structures of four closely related δ‐keto esters, which differ only in the substitution at a single C atom (by H, OMe, Cl and Br), are compared, namely ethyl 2‐cyano‐5‐oxo‐5‐phenyl‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H22N2O3, (1), ethyl 2‐cyano‐5‐(4‐methoxyphenyl)‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C20H24N2O4, (2), ethyl 5‐(4‐chlorophenyl)‐2‐cyano‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H21ClN2O3, (3), and the previously published ethyl 5‐(4‐bromophenyl)‐2‐cyano‐5‐oxo‐3‐(piperidin‐1‐yl)pent‐2‐enoate, C19H21BrN2O3, (4) [Maurya, Vasudev & Gupta (2013). RSC Adv. 3 , 12955–12962]. The molecular conformations are very similar, while there are differences in the molecular assemblies. Intermolecular C—H...O hydrogen bonds are found to be the primary interactions in the crystal packing and are present in all four structures. The halogenated derivatives have additional aromatic–aromatic interactions and cyano–halogen interactions, further stabilizing the molecular packing. A database analysis of cyano–halogen interactions using the Cambridge Structural Database [CSD; Groom & Allen (2014). Angew. Chem. Int. Ed. 53 , 662–671] revealed that about 13% of the organic molecular crystals containing both cyano and halogen groups have cyano–halogen interactions in their packing. Three geometric parameters for the C—X...N[triple‐bond]C interaction (X = F, Cl, Br or I), viz. the N...X distance and the C—X...N and C—N...X angles, were analysed. The results indicate that all the short cyano–halogen contacts in the CSD can be classified as halogen bonds, which are directional noncovalent interactions.  相似文献   

9.
In order to examine the preferred hydrogen‐bonding pattern of various uracil derivatives, namely 5‐(hydroxymethyl)uracil, 5‐carboxyuracil and 5‐carboxy‐2‐thiouracil, and for a conformational study, crystallization experiments yielded eight different structures: 5‐(hydroxymethyl)uracil, C5H6N2O3, (I), 5‐carboxyuracil–N,N‐dimethylformamide (1/1), C5H4N2O4·C3H7NO, (II), 5‐carboxyuracil–dimethyl sulfoxide (1/1), C5H4N2O4·C2H6OS, (III), 5‐carboxyuracil–N,N‐dimethylacetamide (1/1), C5H4N2O4·C4H9NO, (IV), 5‐carboxy‐2‐thiouracil–N,N‐dimethylformamide (1/1), C5H4N2O3S·C3H7NO, (V), 5‐carboxy‐2‐thiouracil–dimethyl sulfoxide (1/1), C5H4N2O3S·C2H6OS, (VI), 5‐carboxy‐2‐thiouracil–1,4‐dioxane (2/3), 2C5H4N2O3S·3C6H12O3, (VII), and 5‐carboxy‐2‐thiouracil, C10H8N4O6S2, (VIII). While the six solvated structures, i.e. (II)–(VII), contain intramolecular S(6) O—H…O hydrogen‐bond motifs between the carboxy and carbonyl groups, the usually favoured R22(8) pattern between two carboxy groups is formed in the solvent‐free structure, i.e. (VIII). Further R22(8) hydrogen‐bond motifs involving either two N—H…O or two N—H…S hydrogen bonds were observed in three crystal structures, namely (I), (IV) and (VIII). In all eight structures, the residue at the ring 5‐position shows a coplanar arrangement with respect to the pyrimidine ring which is in agreement with a search of the Cambridge Structural Database for six‐membered cyclic compounds containing a carboxy group. The search confirmed that coplanarity between the carboxy group and the cyclic residue is strongly favoured.  相似文献   

10.
The molecules of racemic 3‐benzoylmethyl‐3‐hydroxyindolin‐2‐one, C16H13NO3, (I), are linked by a combination of N—H...O and O—H...O hydrogen bonds into a chain of centrosymmetric edge‐fused R22(10) and R44(12) rings. Five monosubstituted analogues of (I), namely racemic 3‐hydroxy‐3‐[(4‐methylbenzoyl)methyl]indolin‐2‐one, C17H15NO3, (II), racemic 3‐[(4‐fluorobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12FNO3, (III), racemic 3‐[(4‐chlorobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12ClNO3, (IV), racemic 3‐[(4‐bromobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12BrNO3, (V), and racemic 3‐hydroxy‐3‐[(4‐nitrobenzoyl)methyl]indolin‐2‐one, C16H12N2O5, (VI), are isomorphous in space group P. In each of compounds (II)–(VI), a combination of N—H...O and O—H...O hydrogen bonds generates a chain of centrosymmetric edge‐fused R22(8) and R22(10) rings, and these chains are linked into sheets by an aromatic π–π stacking interaction. No two of the structures of (II)–(VI) exhibit the same combination of weak hydrogen bonds of C—H...O and C—H...π(arene) types. The molecules of racemic 3‐hydroxy‐3‐(2‐thienylcarbonylmethyl)indolin‐2‐one, C14H11NO3S, (VII), form hydrogen‐bonded chains very similar to those in (II)–(VI), but here the sheet formation depends upon a weak π–π stacking interaction between thienyl rings. Comparisons are drawn between the crystal structures of compounds (I)–(VII) and those of some recently reported analogues having no aromatic group in the side chain.  相似文献   

11.
In order to determine the impact of different substituents and their positions on intermolecular interactions and ultimately on the crystal packing, unsubstituted N‐phenyl‐2‐phthalimidoethanesulfonamide, C16H14N2O4S, (I), and the N‐(4‐nitrophenyl)‐, C16H13N3O6S, (II), N‐(4‐methoxyphenyl)‐, C16H16N3O6S, (III), and N‐(2‐ethylphenyl)‐, as the monohydrate, C18H18N2O4S·H2O, (IV), derivatives have been characterized by single‐crystal X‐ray crystallography. Sulfonamides (I) and (II) have triclinic crystal systems, while (III) and (IV) are monoclinic. Although the molecules differ from each other only with respect to small substituents and their positions, they crystallized in different space groups as a result of differing intra‐ and intermolecular hydrogen‐bond interactions. The structures of (I), (II) and (III) are stabilized by intermolecular N—H…O and C—H…O hydrogen bonds, while that of (IV) is stabilized by intermolecular O—H…O and C—H…O hydrogen bonds. All four structures are of interest with respect to their biological activities and have been studied as part of a program to develop anticonvulsant drugs for the treatment of epilepsy.  相似文献   

12.
The cycloadducts of isoquinolinium N‐phenyl imide 2 with C=C bonds are derivatives of 2‐amino‐1,2‐dihydroisoquinoline. Their Nβ‐vinylphenylhydrazine system is amenable to an acid‐catalyzed [3,3]‐sigmatropic shift; the formation of pentacyclic aminals is exemplified by 6 → 8 . The dimethyl maleate adduct 11 , C21H20N2O4, is exceptional by being converted on treatment with acid to bright‐yellow crystals, C24H22N2O6 (additional C3H2O2). X‐Ray crystal‐structure analysis and NMR spectra reveal structure 13 , and mechanistic studies indicated an initial β‐elimination at the N−N bond of 11 to yield 18 ; this step is followed by a retro‐Mannich‐type cleavage that gives methyl isoquinoline‐1‐acetate ( 14 ) and methyl 2‐(phenylimino)acetate ( 15 ), according to the sequence C21H20N2O4 ( 11 )→ 18 →C12H11NO2 ( 14 )+C9H9NO2 ( 15 ). In the second act of the drama, electrophilic attack by 15 ‐H+ on the ene‐hydrazine group of a second molecule of 11 furnishes 13 by a polystep intramolecular redox reaction. All rate constants must be fine‐tuned in this reaction cascade to give 13 in yields of up to 78% with an overall stoichiometry: 2 C21H20N2O4 ( 11 )→C24H22N2O6 ( 13 )+C12H11NO2 ( 14 )+aniline. Interception and model experiments confirmed the above pathway. A by‐product, C33H31N3O6 ( 62 ), arises from an acid‐catalyzed dimerization of 11 and subsequent elimination of 15 .  相似文献   

13.
In the title compounds, 2‐methoxyethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O4, (II), isopropyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O3, (III), and ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intramolecular C—H...O contacts to form six‐membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] intermolecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak intermolecular C—H...O and C—H...N hydrogen bonds, and in (III) intermolecular C—H...O hydrogen bonds link the chains into ladders along the a axis.  相似文献   

14.
The X‐ray crystal structures of solvates of sulfapyridine have been determined to be conformational polymorphs. 4‐Amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide (polymorph III), C11H11N3O2S, (1), 4‐amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide 1,3‐dioxane monosolvate, C11H11N3O2S·C4H8O2, (2), and 4‐amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide tetrahydrofuran monosolvate, C11H11N3O2S·C4H8O, (3), crystallized as the imide form, while piperidin‐1‐ium 4‐amino‐N‐(pyridin‐2‐yl)benzenesulfonamidate, C5H12N+·C11H10N3O2S, (4), crystallized as the piperidinium salt. The tetrahydrofuran and dioxane solvent molecules in their respective structures were disordered and were refined using a disorder model. Three‐dimensional hydrogen‐bonding networks exist in all structures between at least one sulfone O atom and the aniline N atom.  相似文献   

15.
The structures of the title compounds, C15H13N3O4, (I), and C16H15N3O5 [IUPAC name: ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(3‐nitro­phenyl)‐4H‐pyrano‐3‐carboxyl­ate], (II), are very similar, with the heterocyclic rings adopting boat conformations. The pseudo‐axial m‐nitro­phenyl substituents are rotated by 84.0 (1) and 98.7 (1)° in (I) and (II), respectively, with respect to the four coplanar atoms of the boat. The dihedral angles between the phenyl rings and nitro groups are 12.1 (2) and 8.4 (2)° in (I) and (II), respectively. The two compounds have similar patterns of intermolecular N—H?O and N—H?N hydrogen bonding, which link mol­ecules into infinite tapes along b .  相似文献   

16.
The supramolecular chemistry of coordination compounds has become an important research domain of modern inorganic chemistry. Herein, six isostructural group IIB coordination compounds containing a 2‐{[(2‐methoxyphenyl)imino]methyl}phenol ligand, namely dichloridobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)zinc(II), [ZnCl2(C28H26N2O4)], 1 , diiodidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)zinc(II), [ZnI2(C28H26N2O4)], 2 , dibromidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)cadmium(II), [CdBr2(C28H26N2O4)], 3 , diiodidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)cadmium(II), [CdI2(C28H26N2O4)], 4 , dichloridobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)mercury(II), [HgCl2(C28H26N2O4)], 5 , and diiodidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)mercury(II), [HgI2(C28H26N2O4)], 6 , were synthesized and characterized by X‐ray crystallography and spectroscopic techniques. All six compounds exhibit an infinite one‐dimensional ladder in the solid state governed by the formation of hydrogen‐bonding and π–π stacking interactions. The crystal structures of these compounds were studied using geometrical and Hirshfeld surface analyses. They have also been studied using M06‐2X/def2‐TZVP calculations and Bader's theory of `atoms in molecules'. The energies associated with the interactions, including the contribution of the different forces, have been evaluated. In general, the π–π stacking interactions are stronger than those reported for conventional π–π complexes, which is attributed to the influence of the metal coordination, which is stronger for Zn than either Cd or Hg. The results reported herein might be useful for understanding the solid‐state architecture of metal‐containing materials that contain MIIX2 subunits and aromatic organic ligands.  相似文献   

17.
Both 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methylphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile and 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methoxyphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile crystallize from dimethylformamide solutions as stoichiometric 1:1 solvates, viz. C29H21N5·C3H7NO, (I), and C29H21N5O·C3H7NO, (II), respectively; however, 6‐(1H‐indol‐3‐yl)‐3‐methyl‐1‐phenyl‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile, C31H25N5O3, (III), crystallizes in the unsolvated form. The heterocyclic components of (I) are linked by C—H...π(arene) hydrogen bonds to form cyclic centrosymmetric dimers, from which the solvent molecules are pendent, linked by N—H...O hydrogen bonds. In (II), the heterocyclic components are linked by a combination of C—H...N and C—H...π(arene) hydrogen bonds into chains containing two types of centrosymmetric ring, and the pendent solvent molecules are linked to these chains by N—H...O hydrogen bonds. Molecules of (III) are linked into simple C(12) chains by an N—H...O hydrogen bond, and these chains are weakly linked into pairs by an aromatic π–π stacking interaction.  相似文献   

18.
2‐Ammonio‐5‐chloro‐4‐methylbenzenesulfonate, C7H8ClNO3S, (Ia), is an intermediate in the synthesis of lake red azo pigments. The present structure determination from single‐crystal data confirms the results of a previous powder diffraction determination [Bekö, Thoms, Brüning, Alig, van de Streek, Lakatos, Glaubitz & Schmidt (2010). Z. Kristallogr. 225 , 382–387]. The zwitterionic tautomeric form is confirmed. During a polymorph screening, two additional pseudopolymorphs were obtained, viz. 2‐ammonio‐5‐chloro‐4‐methylbenzenesulfonate 1‐methyl‐2‐pyrrolidone monosolvate, C7H8ClNO3S·C5H9NO, (Ib), and 2‐ammonio‐5‐chloro‐4‐methylbenzenesulfonate dimethyl sulfoxide monosolvate, C7H8ClNO3S·C2H6OS, (Ic). The molecules of (Ib) have crystallographic m symmetry. The 1‐methyl‐2‐pyrrolidone solvent molecule has an envelope conformation and is disordered around the mirror plane. The structure shows hydrogen‐bonded ladders of molecules [graph‐set notation C22(6)R22(12)] in the [010] direction. The benzene groups of adjacent ladders are also stacked in this direction. A different type of hydrogen‐bonded ladder [graph‐set notation C(6)R22(4)R44(12)] occurs in (Ic). In (Ia), (Ib) and (Ic), the molecules correspond to the zwitterionic tautomer. The structure of the cocrystal of 4‐aminobenzenesulfonic acid with 1,4‐bis(4,5‐dihydroimidazol‐2‐yl)benzene [Shang, Ren, Wang, Lu & Yang (2009). Acta Cryst. E 65 , o2221–o2222] is corrected; it actually contains 4‐aminobenzenesulfonate anions and 2,2′‐(1,4‐phenylene)di(dihydroimidazolium) dications, i.e. 2,2′‐(1,4‐phenylene)di(4,5‐dihydroimidazolium) bis(4‐aminobenzenesulfonate) dihydrate, C12H16N42+·2C6H6NO3S·2H2O. Hence, all known structures of aminobenzenesulfonic acid complexes contain ionic or zwitterionic molecules; there is no known structure with a neutral aminobenzenesulfonic acid molecule.  相似文献   

19.
In the two title compounds, N‐methyl­carba­zole–3,5‐di­nitro­benzo­nitrile (1/1), C13H11N·C7H3N3O4, (I), and N‐ethyl­carba­zole–3,5‐di­nitro­benzo­nitrile (1/1), C14H13N·C7H3N3O4, (II), the donor and acceptor mol­ecules are stacked alternately to form one‐dimensional columns. In (I), the N‐methyl group of the donor is nearly eclipsed with respect to one of the nitro groups of the neighboring acceptor in a column, whereas the N‐ethyl group is anti with respect to the cyano group of the neighboring acceptor in (II).  相似文献   

20.
2‐Chloro‐4‐nitro­benzoic acid and 2‐chloro‐5‐nitro­benzoic acid form O—H?N hydrogen bonds with pyrazine to afford 2:1 complexes of 2C7H4ClNO4·C4H4N2, (I) and (II), respectively, that are located on inversion centers. The 2C7H4ClNO4·­C4H4N2 units in both complexes are connected by weak C—H?O hydrogen bonds; the units build a three‐dimensional hydrogen‐bond network in (I) and a ribbon structure in (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号