首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In (2RS,4SR)‐7‐chloro‐2‐exo‐(2‐chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H12Cl2FNO, (I), molecules are linked into chains by a single C—H...π(arene) hydrogen bond. (2RS,4SR)‐2‐exo‐(2‐Chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13ClFNO, (II), is isomorphous with compound (I) but not strictly isostructural with it, as the hydrogen‐bonded chains in (II) are linked into sheets by an aromatic π–π stacking interaction. The molecules of (2RS,4SR)‐7‐methyl‐2‐exo‐(4‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H19NO, (III), are linked into sheets by a combination of C—H...N and C—H...π(arene) hydrogen bonds. (2S,4R)‐2‐exo‐(2‐Chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (IV), crystallizes as a single enantiomer and the molecules are linked into a three‐dimensional framework structure by a combination of one C—H...O hydrogen bond and three C—H...π(arene) hydrogen bonds.  相似文献   

2.
The molecules of (2RS,4SR)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrClNOS, (I), are linked into cyclic centrosymmetric dimers by C—H...π(thienyl) hydrogen bonds. Each such dimer makes rather short Br...Br contacts with two other dimers. In (2RS,4SR)‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H15NOS, (II), a combination of C—H...O and C—H...π(thienyl) hydrogen bonds links the molecules into chains of rings. A more complex chain of rings is formed in (2RS,4SR)‐7‐chloro‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14ClNOS, (III), built from a combination of two independent C—H...O hydrogen bonds, one C—H...π(arene) hydrogen bond and one C—H...π(thienyl) hydrogen bond.  相似文献   

3.
(2SR,4RS)‐7‐Fluoro‐2‐exo‐(2‐furyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H12FNO2, (I), crystallizes with Z′ = 2 in the space group P21/c. A combination of three C—H...O hydrogen bonds and one C—H...N hydrogen bond links the molecules into a complex chain of rings, and pairs of such chains are linked into a tube‐like structure by two C—H...π(arene) hydrogen bonds. There are no hydrogen bonds in the structure of racemic (2SR,4RS)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐fluoro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrFNOS, (II), while the molecules of (2S,4R)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14BrF3NO2S, (III), are linked into sheets by a combination of two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The significance of this study lies in its observation of the wide variation in the patterns of supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

4.
In (2SR,4RS)‐7‐chloro‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13Cl2NO, (I), the molecules are linked by a combination of C—H...O and C—H...N hydrogen bonds into a chain of edge‐fused R33(12) rings. The isomeric compound (2S,4R)‐7‐chloro‐2‐exo‐(2‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (II), crystallizes as a single 2S,4R enantiomer and the molecules are linked into a three‐dimensional framework structure by two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The molecules of (2S,4R)‐7‐chloro‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C20H16ClNO, (III), are also linked into a three‐dimensional framework structure, here by one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds. The significance of this study lies in its observation of the variations in molecular configuration and conformation, and in the variation in the patterns of supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

5.
(2S*,4R*)‐2‐exo‐(1‐Naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C20H17NO, (I), crystallizes with Z′ = 2 in the space group P21; the two independent molecules have the same absolute configuration, although this configuration is indeterminate. The molecules of each type are linked by a combination of C—H...O and C—H...π(arene) hydrogen bonds to form two independent sheets, each containing only one type of molecule. (2SR,4RS)‐7‐Methyl‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C21H19NO, (II), crystallizes as a true racemate in the space group P21/c, and a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds links the molecules into sheets, each containing equal numbers of the two enantiomorphs. (2S*,4R*)‐2‐exo‐(1‐Naphthyl)‐7‐trifluoromethyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C21H16F3NO2, (III), crystallizes as a single enantiomorph, as for (I), but now with Z′ = 1 in the space group P212121; again, the absolute configuration is indeterminate. A single C—H...π(arene) hydrogen bond links the molecules of (III) into simple chains. (2S,4R)‐8‐Chloro‐9‐methyl‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C21H18ClNO, (IV), crystallizes as a single enantiomorph of well defined configuration, in the space group P212121, where two independent C—H...π(arene) hydrogen bonds link the molecules into a single three‐dimensional framework structure.  相似文献   

6.
(2SR,4RS)‐2‐exo‐Phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H15NO, (I), (2SR,4RS)‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (II), and (2SR,4RS)‐2‐exo‐(3‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C17H17NO, (III), all crystallize with Z′ = 2, in the space groups Cc, P21/n and P21/c, respectively. In each of (II) and (III), the conformations of the two independent molecules are significantly different. The molecules in (I) are linked by C—H...π(arene) hydrogen bonds to form two independent chains, each containing only one type of molecule. The molecules in (II) are linked into sheets by a combination of C—H...O, C—H...(N,O) and C—H...π(arene) hydrogen bonds, all of which link pairs of molecules related by inversion, while in (III), the molecules are linked into sheets by a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds. There are no direction‐specific intermolecular interactions of any kind in the structure of (2SR,4RS)‐7‐bromo‐2‐exo‐phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14BrNO, (IV), but in the structure of (2SR,4RS)‐2‐exo‐(4‐bromophenyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13BrClNO, (V), a combination of one C—H...N hydrogen bond and one C—H...O hydrogen bond links the molecules into sheets of alternating centrosymmetric R22(14) and R66(22) rings. Comparisons are made with the structures of a number of related compounds.  相似文献   

7.
(2SR,4RS)‐7‐Chloro‐2‐exo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H16ClNO, (I), crystallizes as a racemic twin in the space group P21 and the molecules are linked into a chain of edge‐fused R33(9) rings by a combination of C—H...O and C—H...N hydrogen bonds. The diastereoisomer (2RS,4RS)‐7‐chloro‐2‐endo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (II), also crystallizes as a racemic twin, but in the space group P212121, and a two‐centre C—H...N hydrogen bond and a three‐centre C—H...(O,N) hydrogen bond combine to link the molecules into a complex chain of rings. In (2R,4R)‐7‐fluoro‐2‐endo‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H16FNO, (III), which is not isomorphous with (II), the molecules are linked by a single C—H...O hydrogen bond into simple chains, but the molecular arrangements in (II) and (III) are nonetheless very similar. The significance of this study lies in its observation of the variations in molecular configuration and conformation, and in the variation in the supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

8.
Tetrahydro‐1‐benzazepines have been described as potential antiparasitic drugs for the treatment of chagas disease and leishmaniasis, two of the most important so‐called `forgotten tropical diseases' affecting South and Central America, caused by Trypanosoma cruzi and Leishmania chagasi parasites, respectively. Continuing our extensive work describing the structural characteristics of some related compounds with interesting biological properties, the crystallographic features of three epoxy‐1‐benzazepines, namely (2SR,4RS)‐6,8‐dimethyl‐2‐(naphthalen‐1‐yl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (1), (2SR,4RS)‐6,9‐dimethyl‐2‐(naphthalen‐1‐yl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (2), and (2SR,4RS)‐8,9‐dimethyl‐2‐(naphthalen‐1‐yl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (3), all C22H21NO, and two 1‐benzazepin‐4‐ols, namely 7‐fluoro‐cis‐2‐[(E)‐styryl]‐2,3,4,5‐tetrahydro‐1H‐1‐benzazepin‐4‐ol, C18H18FNO, (4), and 7‐fluoro‐cis‐2‐[(E)‐pent‐1‐enyl]‐2,3,4,5‐tetrahydro‐1H‐1‐benzazepin‐4‐ol, C15H20FNO, (5), are described. Some peculiarities in the crystallization behaviour were found, involving significant variations in the crystalline structures as a result of modest changes in the peripheral substituents in (1)–(3) and the occurrence of discrete disorder due to the molecular overlay of enantiomers with more than one conformation in (5). In particular, an interesting phase change on cooling was observed for compound (5), accompanied by an approximate fourfold increase of the unit‐cell volume and a change of the Z′ value from 1 to 4. This transition is a consequence of the partial ordering of the pentenyl chains in half of the molecules breaking half of the symmetry axes observed in the room‐temperature structure of (5). The structural assembly in all the title compounds is characterized by not only (N,O)—H…(O,N) hydrogen bonds, but also by unconventional C—H…O contacts, resulting in a wide diversity of packing.  相似文献   

9.
(2R,4S)‐2‐(3‐Methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxynaphtho[1,2‐b]azepine, C19H17NOS, (I), crystallizes with a single enantiomer in each crystal, whereas its geometrical isomer (2RS,4SR)‐2‐(5‐methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐naphtho[1,2‐b]azepine, (II), and (2RS,4SR)‐2‐(5‐bromothiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxynaphtho[1,2‐b]azepine, C18H14BrNOS, (III), both crystallize as racemic mixtures. A combination of one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds links the molecules of (I) into a three‐dimensional framework; the molecules of (II) are linked into a C(4)C(4)[R22(7)] chain of rings by a combination of C—H...N and C—H...O hydrogen bonds; and in (III), where Z′ = 2, a combination of four C—H...π(arene) hydrogen bonds and two C—H...π(thienyl) hydrogen bonds links the molecules into complex sheets. Comparisons are made with the assembly patterns in some aryl‐substituted 1,4‐epoxynaphtho[1,2‐b]azepines.  相似文献   

10.
4‐Hydroxy‐2‐vinyl‐2,3,4,5‐tetrahydro‐1‐benzazepine, C12H15NO, (I), and its 7‐fluoro and 7‐chloro analogues, namely 7‐fluoro‐4‐hydroxy‐2‐vinyl‐2,3,4,5‐tetrahydro‐1‐benzazepine, C12H14FNO, (II), and 7‐chloro‐4‐hydroxy‐2‐vinyl‐2,3,4,5‐tetrahydro‐1‐benzazepine, C12H14ClNO, (III), are isomorphous, but with variations in the unit‐cell dimensions which preclude in compound (III) one of the weaker intermolecular interactions found in compounds (I) and (II). Thus the compounds are not strictly isostructural in terms of the structurally significant intermolecular interactions, although the corresponding atomic coordinates are very similar. The azepine rings adopt chair conformations. The molecules are linked by a combination of N—H...O and O—H...N hydrogen bonds into chains of edge‐fused R33(10) rings, which in compounds (I) and (II) are further linked into sheets by a single C—H...π(arene) hydrogen bond. The significance of this study lies in its observation of isomorphism in compounds (I)–(III), and its observation of a sufficient variation in one of the cell dimensions effectively to alter the range of significant hydrogen bonds present in the crystal structures.  相似文献   

11.
Mol­ecules of the title compound, C18H20N2O3, are linked into ribbons by N—H·O and N—H·N hydrogen bonds. Stereochemical comparison with Ro 15‐1788 (viz. eth­yl 8‐fluoro‐5,6‐dihydro‐5‐meth­yl‐6‐oxo‐4H‐imidazo[1,5‐a][1,4]benzodiazepine‐3‐carboxyl­ate) has identified three electronegative N and O atoms in the mol­ecule as features likely to be responsible for its activity as a benzodiazepine‐receptor antagonist.  相似文献   

12.
A concise, efficient and versatile route from simple starting materials to tricyclic tetrahydro‐1‐benzazepines carrying [a]‐fused heterocyclic units is reported. Thus, the easily accessible methyl 2‐[(2‐allyl‐4‐chlorophenyl)amino]acetate, (I), was converted, via (2RS,4SR)‐7‐chloro‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1‐benzo[b]azepine‐2‐carboxylate, (II), to the key intermediate methyl (2RS,4SR)‐7‐chloro‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (III). Chloroacetylation of (III) provided the two regioisomers methyl (2RS,4SR)‐7‐chloro‐1‐(2‐chloroacetyl)‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (IVa), and methyl (2RS,4SR)‐7‐chloro‐4‐(2‐chloroacetoxy)‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, C14H15Cl2NO4, (IVb), as the major and minor products, respectively, and further reaction of (IVa) with aminoethanol gave the tricyclic target compound (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐3‐(2‐hydroxyethyl)‐2,3,4a,5,6,7‐hexahydrobenzo[f]pyrazino[1,2‐a]azepine‐1,4‐dione, C15H17ClN2O4, (V). Reaction of ester (III) with hydrazine hydrate gave the corresponding carbohydrazide (VI), which, with trimethoxymethane, gave a second tricyclic target product, (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐4a,5,6,7‐tetrahydrobenzo[f][1,2,4]triazino[4,5‐a]azepin‐4(3H)‐one, C12H12ClN3O2, (VII). Full spectroscopic characterization (IR, 1H and 13C NMR, and mass spectrometry) is reported for each of compounds (I)–(III), (IVa), (IVb) and (V)–(VII), along with the molecular and supramolecular structures of (IVb), (V) and (VII). In each of (IVb), (V) and (VII), the azepine ring adopts a chair conformation and the six‐membered heterocyclic rings in (V) and (VII) adopt approximate boat forms. The molecules in (IVb), (V) and (VII) are linked, in each case, into complex hydrogen‐bonded sheets, but these sheets all contain a different range of hydrogen‐bond types: N—H…O, C—H…O, C—H…N and C—H…π(arene) in (IVb), multiple C—H…O hydrogen bonds in (V), and N—H…N, O—H…O, C—H…N, C—H…O and C—H…π(arene) in (VII).  相似文献   

13.
In continuation of our search for potent antiplatelet agents, we have synthesized and evaluated several α‐methylidene‐γ‐butyrolactones bearing 3,4‐dihydroquinolin‐2(1H)‐one moieties. O‐Alkylation of 3,4‐dihydro‐8‐hydroxyquinolin‐2(1H)‐one ( 1 ) with chloroacetone under basic conditions afforded 3,4‐dihydro‐8‐(2‐oxopropoxy)quinolin‐2(1H)‐one ( 2a ) and tricyclic 2,3,6,7‐tetrahydro‐3‐hydroxy‐3‐methyl‐5H‐pyrido[1,2,3‐de][1,4]benzoxazin‐5‐one ( 3a ) in a ratio of 1 : 2.84. Their Reformatsky‐type condensation with ethyl 2‐(bromomethyl)prop‐2‐enoate furnished 3,4‐dihydro‐8‐[(2,3,4,5‐tetrahydro‐2‐methyl‐4‐methylidene‐5‐oxofuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 4a ), which shows antiplatelet activity, in 70% yield. Its 2′‐Ph derivatives, and 6‐ and 7‐substituted analogs were also obtained from the corresponding 3,4‐dihydroquinolin‐2(1H)‐ones via alkylation and the Reformatsky‐type condensation. Of these compounds, 3,4‐dihydro‐7‐[(2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxo‐2‐phenylfuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 10b ) was the most active against arachidonic acid (AA) induced platelet aggregation with an IC50 of 0.23 μM . For the inhibition of platelet‐activating factor (PAF) induced aggregation, 6‐{[2‐(4‐fluorophenyl)‐2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxofuran‐2‐yl]methoxy}‐3,4‐dihydroquinolin‐2(1H)‐one ( 9c ) was the most potent with an IC50 value of 1.83 μM .  相似文献   

14.
We present the crystal and molecular structures of two new N‐phthalyl‐3‐amino‐2‐arylpropionic acid pantolactonyl ester derivatives with 4‐fluorophenyl and 3,4‐dimethoxyphenyl as the aryl group, 2,3,4,5‐tetrahydro‐4,4‐dimethyl‐2‐oxofuran‐3‐yl 3‐phthalimido‐2‐(4‐fluorophenyl)propanoate, C23H20FNO6, and 2,3,4,5‐tetrahydro‐4,4‐dimethyl‐2‐oxofuran‐3‐yl 3‐phthalimido‐2‐(3,4‐dimethoxyphenyl)propanoate ethyl acetate hemisolvate, C25H25NO8·0.5C4H8O2. This structural study confirms the S configuration of the C2 and validates the stereospecificity of our synthesis strategy.  相似文献   

15.
(2R*,4S*)‐Methyl 2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐benz[b]azepine‐2‐carboxylate, C12H13NO3, (I), and its reduction product (2R*,4S*)‐methyl 4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benz[b]azepine‐2‐carboxylate, C12H15NO3, (II), both crystallize as single enantiomers in the space group P212121, while the hydrolysis product (2RS,4SR)‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benz[b]azepine‐2‐carboxylic acid, C11H13NO3, (III), and the lactone (2RS,5SR)‐8‐(trifluoromethoxy)‐5,6‐dihydro‐1H‐2,5‐methanobenz[e][1,4]oxazocin‐3(2H)‐one, C12H10F3NO3, (IV), both crystallize as racemic mixtures in the space group P21/c. The molecules of compound (IV) are linked into centrosymmetric R22(10) dimers by N—H...O hydrogen bonds, and those of compound (I) are linked into chains by C—H...π(arene) hydrogen bonds. A combination of O—H...O and O—H...N hydrogen bonds links the molecules of compound (III) into sheets containing equal numbers of R44(14) and R44(26) rings, and a combination of C—H...π(arene) hydrogen bonds and three‐centre O—H...(N,O) hydrogen bonds links the molecules of compound (II) into a three‐dimensional framework structure. Comparisons are made with some related compounds.  相似文献   

16.
In 4‐fluoroisoquinoline‐5‐sulfonyl chloride, C9H5ClFNO2S, (I), one of the two sulfonyl O atoms lies approximately on the isoquinoline plane as a result of minimizing the steric repulsion between the chlorosulfonyl group and the neighbouring F atom. In (S)‐(−)‐4‐fluoro‐N‐(1‐hydroxypropan‐2‐yl)isoquinoline‐5‐sulfonamide, C12H13FN2O3S, (II), there are two crystallographically independent molecules (Z′ = 2). The molecular conformations of these two molecules differ in that the amine group of one forms an intramolecular bifurcated hydrogen bond with the F and OH groups, whilst the other forms only a single intramolecular N—H...F hydrogen bond. The N—H...F hydrogen bonds correspond to weak coupling between the N(H) and 19F nuclei, observed in the 1H NMR solution‐state spectra. In (S)‐(−)‐4‐[(4‐fluoroisoquinolin‐5‐yl)sulfonyl]‐3‐methyl‐1,4‐diazepan‐1‐ium chloride, C15H19FN3O2S+·Cl, (III), the isoquinoline plane is slightly deformed, suggestive of a steric effect induced by the bulky substituent on the sulfonyl group.  相似文献   

17.
(1RS,3RS,4RS,10SR)‐2,2,3,10‐Tetrabromo‐1,2,3,4‐tetrahydro‐1,4‐ethanonaphthalene, C12H10Br4, (I), is the first structure to be reported with four Br atoms bound to a 1,4‐ethanonaphthalene framework and also the first which possesses three Br atoms in exo positions. Interactions between the Br atoms [three short intramolecular Br...Br distances of 3.1094 (4), 3.2669 (4) and 3.4415 (5) Å] have little effect on the C—C bond lengths but lead to significant twisting of the cage structure compared with the parent hydrocarbon, which is expected to be fully eclipsed at the two saturated C2H4 bridge positions. Chemically related (1SR,4RS)‐2,3‐dibromo‐1,4‐ethenonaphthalene, C12H8Br2, (II), obtained by double dehydrobromination of (I), represents the first structure of any halogen‐substituted benzobarrelene. This cis‐dibromide shows little evidence of steric congestion at the double bond [Br...Br = 3.5276 (8) Å] as a consequence of the large C—C—Br angles [average C=C—Br angle = 126.15 (10)°].  相似文献   

18.
rac‐5‐Diphenylacetyl‐2,2,4‐trimethyl‐2,3,4,5‐tetrahydro‐1,5‐benzothiazepine, C26H27NOS, (I), and rac‐5‐formyl‐2,2,4‐trimethyl‐2,3,4,5‐tetrahydro‐1,5‐benzothiazepine, C13H17NOS, (II), are both characterized by a planar configuration around the heterocyclic N atom. In contrast with the chair conformation of the parent benzothiazepine, which has no substituents at the heterocyclic N atom, the seven‐membered ring adopts a boat conformation in (I) and a conformation intermediate between boat and twist‐boat in (II). The molecules lack a symmetry plane, indicating distortions from the perfect boat or twist‐boat conformations. The supramolecular architectures are significantly different, depending in (I) on C—H...O interactions and intermolecular S...S contacts, and in (II) on a single aromatic π–π stacking interaction.  相似文献   

19.
Both 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methylphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile and 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methoxyphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile crystallize from dimethylformamide solutions as stoichiometric 1:1 solvates, viz. C29H21N5·C3H7NO, (I), and C29H21N5O·C3H7NO, (II), respectively; however, 6‐(1H‐indol‐3‐yl)‐3‐methyl‐1‐phenyl‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile, C31H25N5O3, (III), crystallizes in the unsolvated form. The heterocyclic components of (I) are linked by C—H...π(arene) hydrogen bonds to form cyclic centrosymmetric dimers, from which the solvent molecules are pendent, linked by N—H...O hydrogen bonds. In (II), the heterocyclic components are linked by a combination of C—H...N and C—H...π(arene) hydrogen bonds into chains containing two types of centrosymmetric ring, and the pendent solvent molecules are linked to these chains by N—H...O hydrogen bonds. Molecules of (III) are linked into simple C(12) chains by an N—H...O hydrogen bond, and these chains are weakly linked into pairs by an aromatic π–π stacking interaction.  相似文献   

20.
In the molecular structures of a series of substituted chalcones, namely (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐phenylprop‐2‐en‐1‐one, C21H15FO2, (I), (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐fluorophenyl)prop‐2‐en‐1‐one, C21H14F2O2, (II), (2E)‐1‐(4‐chlorophenyl)‐3‐(2‐fluoro‐4‐phenoxyphenyl)prop‐2‐en‐1‐one, C21H14ClFO2, (III), (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐methylphenyl)prop‐2‐en‐1‐one, C22H17FO2, (IV), and (2E)‐3‐(2‐fluoro‐4‐phenoxyphenyl)‐1‐(4‐methoxyphenyl)prop‐2‐en‐1‐one, C22H17FO3, (V), the configuration of the keto group with respect to the olefinic double bond is scis. The molecules pack utilizing weak C—H...O and C—H...π intermolecular contacts. Identical packing motifs involving C—H...O interactions, forming both chains and dimers, along with C—H...π dimers and π–π aromatic interactions are observed in the fluoro, chloro and methyl derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号