首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2‐Ethynyl‐DNA was developed as a potential DNA‐selective oligonucleotide analog. The synthesis of 2′‐arabino‐ethynyl‐modified nucleosides was achieved starting from properly protected 2′‐ketonucleosides by addition of lithium (trimethylsilyl)acetylide followed by reduction of the tertiary alcohol. After a series of protecting‐group manipulations, phosphoramidite building blocks suitable for solid‐phase synthesis were obtained. The synthesis of oligonucleotides from these building blocks was successful when a fast deprotection scheme was used. The pairing properties of 2′‐arabino‐ethynyl‐modified oligonucleotides can be summarized as follows: 1) The 2′‐arabino‐ethynyl modification of pyrimidine nucleosides leads to a strong destabilization in duplexes with DNA as well as with RNA. The likely reason is that the ethynyl group sterically influences the torsional preferences around the glycosidic bond leading to a conformation not suitable for duplex formation. 2) If the modification is introduced in purine nucleosides, no such influence is observed. The pairing properties are not or only slightly changed, and, in some cases (deoxyadenosine homo‐polymers), the desired stabilization of the pairing with a DNA complementary strand and destabilization with an RNA complement is observed. 3) In oligonucleotides of alternating deoxycytidine‐deoxyguanosine sequence, the incorporation of 2′‐arabino‐ethynyl deoxyguanosine surprisingly leads to the formation of a left‐handed double helix, irrespective of salt concentration. The rationalization for this behavior is that the ethynyl group locks such duplexes in a left‐handed conformation through steric blockade.  相似文献   

2.
3.
The title compound, C58H64S8, has been prepared by Pd‐catalysed direct C—H arylation of tetrathienonaphthalene (TTN) with 5‐hexyl‐2‐iodothiophene and recrystallized by slow evaporation from dichloromethane. The crystal structure shows a completely planar geometry of the TTN core, crystallizing in the monoclinic space group P21/c. The structure consists of slipped π‐stacks and the interfacial distance between the mean planes of the TTN cores is 3.456 (5) Å, which is slightly larger than that of the comparable derivative of tetrathienoanthracene (TTA) with 2‐hexylthiophene groups. The packing in the two structures is greatly influenced by both the aromatic core of the structure and the alkyl side chains.  相似文献   

4.
We describe the synthesis of (5′S)‐5′‐C‐butylthymidine ( 5a ), of the (5′S)‐5′‐C‐butyl‐ and the (5′S)‐5′‐C‐isopentyl derivatives 16a and 16b of 2′‐deoxy‐5‐methylcytidine, as well as of the corresponding cyanoethyl phosphoramidites 9a , b and 14a , b , respectively. Starting from thymidin‐5′‐al 1 , the alkyl chain at C(5′) is introduced via Wittig chemistry to selectively yield the (Z)‐olefin derivatives 3a and 3b (Scheme 2). The secondary OH function at C(5′) is then introduced by epoxidation followed by regioselective reduction of the epoxy derivatives 4a and 4b with diisobutylaluminium hydride. In the latter step, a kinetic resolution of the diastereoisomer mixture 4a and 4b occurs, yielding the alkylated nucleoside 2a and 2b , respectively, with (5′S)‐configuration in high diastereoisomer purity (de=94%). The corresponding 2′‐deoxy‐5‐methylcytidine derivatives are obtained from the protected 5′‐alkylated thymidine derivatives 7a and 7b via known base interconversion processes in excellent yields (Scheme 3). Application of the same strategy to the purine nucleoside 2′‐deoxyadenine to obtain 5′‐C‐butyl‐2′‐deoxyadenosine 25 proved to be difficult due to the sensitivity of the purine base to hydride‐based reducing agents (Scheme 4).  相似文献   

5.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

6.
《化学:亚洲杂志》2017,12(12):1347-1352
The selection of artificial genetic polymers with tailor‐made properties for their application in synthetic biology requires the exploration of new nucleosidic scaffolds that can be used in selection experiments. Herein, we describe the synthesis of a bicyclo‐DNA triphosphate (i.e., 7′,5′‐bc‐TTP) and show its potential to serve for the generation of new xenonucleic acids (XNAs) based on this scaffold. 7′,5′‐bc‐TTP is a good substrate for Therminator DNA polymerase, and up to seven modified units can be incorporated into a growing DNA chain. In addition, this scaffold sustains XNA‐dependent DNA synthesis and potentially also XNA‐dependent XNA synthesis. However, DNA‐dependent XNA synthesis on longer templates is hampered by competitive misincorporation of deoxyadenosine triphosphate (dATP) caused by the slow rate of incorporation of 7′,5′‐bc‐TTP.  相似文献   

7.
The title compound {systematic name: 4‐amino‐5‐cyclopropyl‐7‐(2‐deoxy‐β‐D‐erythro‐pentofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine}, C14H18N4O3, exhibits an anti glycosylic bond conformation, with the torsion angle χ = −108.7 (2)°. The furanose group shows a twisted C1′‐exo sugar pucker (S‐type), with P = 120.0 (2)° and τm = 40.4 (1)°. The orientation of the exocyclic C4′—C5′ bond is ‐ap (trans), with the torsion angle γ = −167.1 (2)°. The cyclopropyl substituent points away from the nucleobase (anti orientation). Within the three‐dimensional extended crystal structure, the individual molecules are stacked and arranged into layers, which are highly ordered and stabilized by hydrogen bonding. The O atom of the exocyclic 5′‐hydroxy group of the sugar residue acts as an acceptor, forming a bifurcated hydrogen bond to the amino groups of two different neighbouring molecules. By this means, four neighbouring molecules form a rhomboidal arrangement of two bifurcated hydrogen bonds involving two amino groups and two O5′ atoms of the sugar residues.  相似文献   

8.
In the title compound, 4‐amino‐7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐fluoro‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13FN4O3, the conformation of the glycosyl bond lies between anti and high anti [χ = −101.1 (3)°]. The furanose moiety adopts the S‐type sugar pucker (2T3), with P = 164.7 (3)° and τ = 40.1 (2)°. The extended structure is a three‐dimensional hydrogen‐bond network involving a C—H⋯F, two N—H⋯O and two O—H⋯O hydrogen bonds.  相似文献   

9.
A series of thirteen luminescent tetrahedral borate complexes based on the 2‐(2′‐hydroxyphenyl)benzoxazole (HBO) core is presented. Their synthesis includes the incorporation of an ethynyl fragment by Sonogashira cross‐coupling reaction, with the goal of extending the conjugation and consequently redshifting their emission wavelength. Different regioisomers, substituted in the 3‐, 4‐, or 5‐position of the phenolate side of the HBO core, were studied in order to compare their photophysical properties. The complexes were characterized by X‐ray diffraction and NMR, UV/Vis, and emission spectroscopy in solution and in the solid state. In all cases, complexation to boron leads to a donor–acceptor character that impacts their photophysical properties. Complexes with a 3‐ or 5‐substituted fragment display mild to pronounced internal charge transfer (ICT), a feature strengthened by the presence of p‐dibutylaminophenylacetylene in the molecular structure, protonation of the nitrogen atom of which leads to a significant blueshift and an increase in quantum yield. On the contrary, when the ethynyl module is grafted on the 4‐position, narrow, structured, symmetrical absorption/emission bands are observed. Moreover, the fact that protonation has little effect on the emission maximum wavelength reveals singlet excited‐state decay. Solid‐state emission properties reveal a redshift compared to solution, explained by tight packing of the π‐conjugated systems and the high planarity of the dyes. Subsequent connection of these complexes to other photoactive subunits (BODIPY, Boranil) provides dyads in which efficient cascade energy transfer is observed.  相似文献   

10.
In the title compound, 2‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐5‐methyl­pyrimidin‐4(1H)‐one, C10H15N3O4, the conformation of the N‐glycosidic bond is syn and the 2‐deoxy­ribo­furan­ose moiety adopts an unusual OT1 sugar pucker. The orientation of the exocyclic C4′—C5′ bond is +sc (+gauche).  相似文献   

11.
The structure of the title compound, 4‐allyl‐2‐methoxy‐6‐[(4‐nitrophenyl)diazenyl]phenyl benzoate, C23H19N3O5, displays the characteristic features of azobenzene derivatives. The azobenzene moiety of the molecule has a trans configuration and in this moiety, average C—N and N=N bond lengths are 1.441 (3) and 1.241 (3) Å, respectively.  相似文献   

12.
In the nearly planar title compound, C15H10IN3, the three pyridine rings exhibit transoid conformations about the interannular C—C bonds. Very weak C—H...N and C—H...I interactions link the molecules into ribbons. Significant π–π stacking between molecules from different ribbons completes a three‐dimensional framework of intermolecular interactions. Four different packing motifs are observed among the known structures of simple 4′‐substituted terpyridines.  相似文献   

13.
The crystal structures of four cyclo­alkane­spiro‐4′‐imidazolidine‐2′,5′‐dithiones, namely cyclo­pentane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.4]­nonane‐2,4‐dithione}, C7H10N2S2, cyclo­hexane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.5]decane‐2,4‐dithione}, C8H12N2S2, cyclo­heptane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.6]undecane‐2,4‐dithione}, C9H14N2S2, and cyclo­octane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐di­aza­spiro­[4.7]dodecane‐2,4‐dithione}, C10H16N2S2, have been determined. The three‐dimensional packing in all of the structures is based on closely similar chains, in which hydantoin moieties are linked through N—H⋯S hydrogen bonding. The size of the cyclo­alkane moiety influences the degree of its deformation. In the cyclo­octane compound, the cyclo­octane ring assumes both boat–chair and boat–boat conformations.  相似文献   

14.
Efforts to chemically ligate oligonucleotides, without resorting to biochemical enzymes, have led to a multitude of synthetic analogues, and have extended oligomer ligation to reactions of novel oligonucleotides, peptides, and hybrids such as PNA. 1 Key requirements for potential diagnostic tools not based on PCR include a fast templated chemical DNA ligation method that exhibits high pairing selectivity, and a sensitive detection method. Here we report on a solid‐phase synthesis of oligonucleotides containing 5′‐ or 3′‐mercapto‐dideoxynucleotides and their chemical ligations, yielding 3′‐5′‐disulfide bonds as a replacement for 3′‐5′‐phosphodiester units. Employing a system designed for fluorescence monitoring, we demonstrate one of the fastest ligation reactions with half‐lives on the order of seconds. The nontemplated ligation reaction is efficiently suppressed by the choice of DNA modification and the 3′‐5′ orientation of the activation site. The influence of temperature on the templated reaction is shown.  相似文献   

15.
The title compound, C21H26FN3O7, is assembled by N—H...O and O—H...O hydrogen bonds into well‐separated two‐dimensional layers of about 15 Å thickness. The crescent conformation of the molecules is stabilized by weak intramolecular C—H...O and C—H...F hydrogen bonds. The uridine moiety adopts an anti conformation. The ribofuranose ring exists in an envelope conformation. All the endocyclic uracil bonds are shorter than normal single C—N and C—C bonds, and five of them have comparable lengths, which implies a considerable degree of delocalization of the electron density within this ring.  相似文献   

16.
The syntheses of the 5′-triphosphates of 2′-deoxyisoguanosine (=p3isoGd) and 2′-deoxy-5-methylisocytidine (=p3me5isoCd), two new bases for the genetic alphabet, are described. The triphosphates were synthesized from the corresponding nucleosides using a transient-protection procedure. The introduction of a methyl group at the 5-position of 2′-deoxyisocytidine remarkably improved the stability of the triphosphate. Characterization of the triphosphates included enzymatic incorporation opposite the complementary base in a template oligonucleotide.  相似文献   

17.
The title compound, C17H13N3, is a versatile precursor for polymeric ter­pyridine derivatives and their metal complexes. The mol­ecule has transoid and near‐coplanar pyridine rings. However, the vinyl group is forced out of the plane of the terpyridyl moiety by a close H?H contact.  相似文献   

18.
4, 4′,5, 5′‐Tetranitro‐2, 2′‐bisimidazole (TNBI) was synthesized by nitration of bisimidazole (BI) and recrystallized from acetone to form a crystalline acetone adduct. Its ammonium salt ( 1 ) was obtained by the reaction with gaseous ammonia. In order to explore new explosives or propellants several energetic nitrogen‐rich 2:1 salts such as the hydroxylammonium ( 3 ), guanidinium ( 4 ), aminoguanidinium ( 5 ), diaminoguanidinium ( 6 ) and triaminoguanidinium 7 4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazolate were prepared by facile metathesis reactions. In addition, methylated 1, 1′‐dimethyl‐4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazole (Me2TNBI, 8 ) was synthesized by the reaction of 2 and dimethyl sulfate. Metal salts of TNBI can also be easily synthesized by using the corresponding metal bases. This was proven by the synthesis of pyrotechnically relevant dipotassium 4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazolate ( 2 ), which is a brilliant burning component e.g. in near‐infrared flares. All compounds were characterized by single crystal X‐ray diffraction, NMR and vibrational spectroscopy, elemental analysis and DSC. The sensitivities were determined by BAM methods (drophammer and friction tester). The heats of formation were calculated using CBS‐4M electronic enthalpies and the atomization method. With these values and mostly the X‐ray densities different detonation parameters were computed by the EXPLO5 computer code. Due to the great thermal stability and calculated energetic properties, especially guanidinium salt 4 could be served as a HNS replacement.  相似文献   

19.
A series of oligonucleotides containing (5′S)‐5′‐C‐butyl‐ and (5′S)‐5′‐C‐isopentyl‐substituted 2′‐deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl‐zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA‐duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I – III , Fig. 2) could experimentally be realized and their duplex‐forming properties analyzed by UV‐melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type‐ III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B‐DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type‐ II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type‐ III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl‐zipper formation presumably by loss of structured H2O in the minor groove.  相似文献   

20.
A preparation of (1′R,2′S,3′R,4′S)‐1‐(2′,3′,4′‐trihydroxycyclopent‐1′‐yl)‐lH‐cytosine (5′‐norcarbodine, 3 ) has formally been achieved in 2 steps from (+)‐(1R,4S)‐4‐hydroxy‐2‐cyclopenten‐1‐yl acetate ( 4 ) and cytosine. The L‐like enantiomer of 3 (that is, 6 ) is also reported using the enantiomer of 4 (that is, 7 ). In evalu ating 3 and 6 for antiviral potential against a number of viruses, compound 3 was found to have activity towards Epstein‐Barr virus (EBV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号