首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The title complexes, hexaaquacobalt(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Co(H2O)6][Bi2(C7H4NO4)4]·2H2O, (I), and hexaaquanickel(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O, (II), are isomorphous and crystallize in the triclinic space group P. The transition metal ions are located on the inversion centre and adopt slightly distorted MO6 (M = Co or Ni) octahedral geometries. Two [Bi(pydc)2] units (pydc is pyridine‐2,6‐dicarboxylate) are linked via bridging carboxylate groups into centrosymmetric [Bi2(pydc)4]2− dianions. The crystal packing reveals that the [M(H2O)6]2+ cations, [Bi2(pydc)4]2− anions and solvent water molecules form multiple hydrogen bonds to generate a supramolecular three‐dimensional network. The formation of secondary Bi...O bonds between adjacent [Bi2(pydc)4]2− dimers provides an additional supramolecular synthon that directs and facilitates the crystal packing of both (I) and (II).  相似文献   

2.
The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene‐1,4‐dicarboxylic acid (H2bdc) and 1,10‐phenanthroline‐5,6‐dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2 fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3‐OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2− ligands are fully deprotonated and adopt μ3‐κOO′:κO′′ and μ4‐κOO′:κO′′:κO′′′ coordination modes, bridging three or four ZnII cations, respectively, from two Zn4(OH)2 units. The Zn4(OH)2 fragment connects six neighbouring tetranuclear units through four μ3‐bdc2− and two μ4‐bdc2− ligands, forming a three‐dimensional framework with uninodal 6‐connected α‐Po topology, in which the tetranuclear Zn4(OH)2 units are considered as 6‐connected nodes and the bdc2− ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2 unit and are connected to it through hydrogen‐bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4‐bdc2− ligands.  相似文献   

3.
4‐Hydroxypyridine‐2,6‐dicarboxylic acid (chelidamic acid, hypydc[H]H2) reacts with MnCl2·2H2O in the presence of piperazine in water to afford the title complex, {[Mn3(C7H2NO5)2(H2O)8]·3H2O}n or {[Mn3(hypydc)2(H2O)8]·3H2O}n. This compound is a one‐dimensional coordination polymer, with the twofold symmetric repeat unit containing three metal centres. Two different coordination geometries are observed for the two independent MnII metal centres, viz. a distorted pentagonal bipyramid and a distorted octahedron. The 4‐oxidopyridine‐2,6‐dicarboxylate anions and two of the water molecules act as bridging ligands. The zigzag‐like geometry of the coordination polymer is stabilized by hydrogen bonds. O—H...O and C—H...O hydrogen bonds and water clusters consolidate the three‐dimensional network structure.  相似文献   

4.
Abstract. The self‐assembly of glycyl‐L ‐leucine, Cu(NO3)2 · 3H2O and 4, 4′‐bipyridine resulted in the tetranuclear‐based metal‐dipeptide supramolecular framework [Cu4(C8H14N2O3)4(H2O)2(C10H8N2)2] · (C10H8N2) · 13H2O ( 1 ). In the structure, the 4, 4′‐bipyridine‐bridged tetranuclear complex of CuII‐glycyl‐L ‐leucine interacts with each other to form a 1D hydrogen‐bonded chain including uncoordinated 4, 4′‐bipyridine and an interesting water chain in different channels. Under similar reaction conditions, racemic glycyl‐D ,L ‐leucine gave rise to the centrosymmetric dinuclear complex [Cu2(C8H14N2O3)2(C10H8N2)] · 2H2O ( 2 ), which is linked into a 2D hydrogen‐bonded structure without 4, 4′‐bipyridine included.  相似文献   

5.
The title compound, [Co(C7H6NO2)2(H2O)4]·4H2O, contains a CoII ion lying on a crystallographic inversion centre. The CoII ion is octahedrally coordinated by two 6‐methylpyridine‐3‐carboxylate ligands in axial positions [Co—O = 2.0621 (9) Å] and by four water molecules in the equatorial plane [Co—O = 2.1169 (9) and 2.1223 (11) Å]. There are also four uncoordinated water molecules. The 6‐methylpyridine‐3‐carboxylate ligands are bound to the CoII ion in a monodentate manner through a carboxylate O atom. There is one strong intramolecular O—H...O hydrogen bond, and six strong intermolecular hydrogen bonds of type O—H...O and one of type O—H...N in the packing, resulting in a complex three‐dimensional supramolecular structure.  相似文献   

6.
The reaction of (Z)‐2‐[amino(pyridine‐2‐yl)methylene]hydrazonecarbothioamide (HAm4DH) with Mn(ClO4)2·6H2O afforded different mononuclear or polynuclear manganese(II) complexes, the nature of which apparently depended on the solvent used. For example, in ethanol a compound of formula [Mn(HAm4DH)2](ClO4)2 ( 1 ) was obtained, where HAm4DH coordinates as a common tridentate NNS donor, but the [Mn(bpy)2(NCS)2] complex ( 2 ) (bpy = 2,2'‐bipyridine) has also been obtained – probably due to C–N bond cleavage of the thiosemicarbazone. Nevertheless, in a basic aqueous medium [Mn(bpy)3](ClO4)2·0.5bpy ( 3 ) is formed and there is structural evidence for chemical transformations of the thiosemicarbazone promoted by MnII. Thus, the sulfate in {[Mn(py)4Mn(py)2(H2O)2(μ‐SO4)2]·4H2O}n ( 4 ) or sulfate and cyclooctasulfur in [Mn(pta)2(pdo)]4(SO4)2·4H2O·S8] ( 5 ), where pta is 3‐(pyridin‐2‐yl)‐1,2,4‐triazol‐5‐amine and pdo is (2R,4R/2S,4S)‐pentane‐2,4‐diolato, arise from the desulfuration and oxidation of the thiosemicarbazone ligand. The structures of complexes 2 to 5 were established by single‐crystal X‐ray diffraction. The formation of pta is the result of the oxidative cyclization of HAm4DH. In the polynuclear complex 4 , the sulfate acts as an (O,O') bridge between alternating Mn(py)2(H2O)2 and Mn(py)4 centers. In the tetranuclear complex 5 , pta acts as a bischelating ligand through the N‐pyridine and N‐triazole, and pdo act as a bridge between two manganese atoms. It is also noteworthy that in complexes 4 and 5 hydrogen bonds give rise to different self‐assembly behaviour that leads to complicated supramolecular structures.  相似文献   

7.
The structures of five metal complexes containing the 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate dianion illustrate the remarkable coordinating versatility of this ligand and the great structural diversity of its complexes. In tetraaquaberyllium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate, [Be(H2O)4](C7H2O6), (I), the ions are linked by eight independent O—H...O hydrogen bonds to form a three‐dimensional hydrogen‐bonded framework structure. Each of the ions in hydrazinium(2+) diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)calcate, (N2H6)[Ca(C7H2O6)2(H2O)2], (II), lies on a twofold rotation axis in the space group P2/c; the anions form hydrogen‐bonded sheets which are linked into a three‐dimensional framework by the cations. In bis(μ‐4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)bis[tetraaquamanganese(II)] tetrahydrate, [Mn2(C7H2O6)2(H2O)8]·4H2O, (III), the metal ions and the organic ligands form a cyclic centrosymmetric Mn2(C7H2O6)2 unit, and these units are linked into a complex three‐dimensional framework structure containing 12 independent O—H...O hydrogen bonds. There are two independent CuII ions in tetraaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)copper(II), [Cu(C7H2O6)(H2O)4], (IV), and both lie on centres of inversion in the space group P; the metal ions and the organic ligands form a one‐dimensional coordination polymer, and the polymer chains are linked into a three‐dimensional framework containing eight independent O—H...O hydrogen bonds. Diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)cadmium monohydrate, [Cd(C7H2O6)(H2O)2]·H2O, (V), forms a three‐dimensional coordination polymer in which the organic ligand is coordinated to four different Cd sites, and this polymer is interwoven with a complex three‐dimensional framework built from O—H...O hydrogen bonds.  相似文献   

8.
In the structure of the title compound, [Mn2(C7H3NO4)2(H2O)6]·2C7H5NO4, a centrosymmetric dinuclear complex, hexaa­aqua­bis­(pyri­dine‐2,6‐di­carboxyl­ato)­dimanganese(II) and free pyri­dine‐2,6‐di­carboxyl­ic acid are present in a 1:2 ratio. In the complex, each Mn2+ ion is coordinated by three O atoms and one N atom from the pyridine‐2,6‐di­carboxyl­ate ligands and by three water O atoms, resulting in a distorted pentagonal bipyramidal coordination. Within the centrosymmetric dinuclear complex, two Mn2+ ions are bridged by two carboxyl­ate O atoms. The crystal structure is stabilized by hydrogen bonds involving all the H atoms of the water ligands.  相似文献   

9.
A homometallic lanthanide tetranuclear cluster, namely [Yb4(pdmH)2(pdm)4 (PhCO2)2(PhCO2H)2(H2O)2] · PhCO2H · 0.25MeOH ( 1 ) (pdmH2 = pyridine‐2,6‐dimethanol) was prepared and structurally characterized. Single‐crystal X‐ray analysis revealed that complex 1 has a tetranuclear core with a zigzag arrangement. Magnetic properties of complex 1 were also investigated.  相似文献   

10.
The title compound, [Sr(C7H5O4)2(C12H8N2)2(H2O)2]·2C12H8N2·4H2O, consists of an SrII complex, uncoordinated phenanthroline (phen) molecules and solvent water molecules. The SrII ion is located on a twofold axis and is coordinated by two phen ligands, two dihydroxybenzoate anions and two water molecules in a distorted tetragonal antiprismatic geometry. Partially overlapped arrangements exist between parallel coordinated and parallel uncoordinated phen rings; the face‐to‐face separations between the former (coordinated) and the latter (uncoordinated) rings are 3.436 (13) and 3.550 (14) Å, respectively. This difference suggests the effect of metal coordination on π–π stacking between phen rings.  相似文献   

11.
A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR, X‐ray photoelectron spectroscopy and single‐crystal X‐ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIII centre is seven‐coordinated by three O atoms and four N atoms. The coordination geometry of each BiIII atom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembled via O—H...O hydrogen bonds, resulting in the formation of a three‐dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid‐to‐centroid distances of 3.461 (4) and 3.641 (4) Å.  相似文献   

12.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

13.
In the title compound, [U(C9H4INO4S)O2(H2O)3]·2H2O, the asymmetric unit contains a UO22+ ion coordinated by the N and O atoms of a 7‐iodo‐8‐oxidoquinoline‐5‐sulfonate dianion (ferron anion) and three coordinated water molecules, and two uncoordinated water molecules. The UO22+ ion exhibits a seven‐coordinate pentagonal bipyramidal geometry. The usual sulfonate oxygen coordination is absent but the sulfonate O atoms, along with the coordinated and lattice water molecules, play a vital role in assembling the three‐dimensional structure via an extensive network of intermolecular O—H...O hydrogen bonds and π–π stacking interactions.  相似文献   

14.
The structure of the title compound, (C7H10NO)2[Mn2V10O28(H2O)10]·4H2O or (C5H4NHCH2CH2OH)2[{Mn(H2O)5}2V10O28]·4H2O, at 293 (2) K has triclinic (P) symmetry. The asymmetric unit consists of one half of a decavanadate anion of Ci symmetry, one [Mn(H2O)5]2+ group, one 2‐(2‐hydroxyethyl)pyridinium cation and two solvent water molecules. The decavanadate ion bridges between two [Mn(H2O)5]2+ groups, thus forming a dodecanuclear complex unit. Complex units are connected via a hydrogen‐bonding network, forming supramolecular layers lying in the (001) plane. Cations and solvent water molecules are located between these layers.  相似文献   

15.
Four new transition metal complexes: [Cu(Hcppa)2(H2O)2] ( 1 ), [Co2(cppa)2(H2O)10] ( 2 ), [Co3(cpia)2(H2O)8] · 2H2O ( 3 ) and [Ni3(cpia)2(H2O)12] · 6H2O ( 4 ) {H2cppa = 3‐(4‐(carboxymethoxy)phenyl]propanoic acid; H3cpia = N‐[4‐(carboxymethoxy)phenyl]iminodiacetic acid} were synthesized and characterized. Complexes 1 and 2 show mononuclear structures, complexes 3 and 4 exhibit dinuclear structures. All complexes extend to 3D supramolecular networks through hydrogen bonds, of which complexes 3 and 4 display microporous structures. In complexes 2 – 4 the water clusters are trapped by the cooperative association of coordinate interactions as well as hydrogen bonds, forming different 1D metal‐water chain structures. Thermal stabilities of complexes 1 – 4 were discussed.  相似文献   

16.
A new cyano‐bridged binuclear 4f‐3d complex Sm(DMSO)4‐(H2O)3Cr(CN)6 was synthesized and characterized by single crystal structure analysis. It crystallizes in monoclinic, space group P21 with a=0.9367(2) nm, b = 1.3917(3) nm, c = 1.1212(2) run, β = 99.88(3)° and Z = 2. In this binuclear complex, Sm atom is eight coordinated and linked to the Cr atom by a cyano bridge. The molecules packs to form 3D structure due to the hydrogen bonds among them. [K3(18‐C‐6)3(H2O)4]Cr(CN)6·3H2O (18‐C‐6 represents 18‐crown‐6‐ether) that was synthesized as a byproduct in the preparation of a Gd—Cr complex is also structurally characterized. Crystal data: triclinic, space group P‐l with a = 1.0496(7) nm, b= 1.1567(14) nm, c = 1.3530(13) nm, a = 94.15(9)°, β = 96.04(8)°, γ = 95.25(9)° and Z = l. [K3(18‐C‐6)3(H2O)4]‐Cr(CN)6·3H2O consists of ionic [K3(18‐C‐6)3(H2O)4]3+ and [Cr(CN)6]3‐ pairs, of which the [K3(18‐C‐6)3(H2O)4]3+ ion is a trinuclear duster connected by water, and K atoms are eight coordinated by eight oxygen atoms of one 18‐C‐6 and two water molecules.  相似文献   

17.
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions.  相似文献   

18.
For charge balance in the title compound, (H5O2)(C3H7N6)3[Mn(C7H3NO4)2]2(OH)·C7H5NO4·5H2O, it is assumed that the metal atom site is disordered MnII/MnIII, probably due to partial air oxidation of the starting MnII species. The formula unit of the complex contains a hydroxonium hydrate cation, H5O2+, also known as the Zundel cation, with twofold symmetry. The O...O [2.445 (10) Å] and O...H distances [1.24 (2) Å] in the H5O2+ cation indicate a strong hydrogen bond. In addition, there is a hydroxide ion that is disordered with respect to a twofold rotation axis. One of the melaminium groups and the pyridine‐2,6‐dicarboxylate (pydc) ligand also reside on crystallographic twofold axes. The coordination environment of the Mn ion is distorted octahedral. Three intermolecular C=O...π interactions are observed, with distances of 3.536 (4), 3.262 (4) and 3.750 (4) Å between carboxylate C=O groups and the centroids of the aromatic rings of pydc and melaminium. There are numerous O—H...O, O—H...N, N—H...O, N—H...N and C—H...O hydrogen bonds. Most of the components of the structure are organized into one plane.  相似文献   

19.
The two isomorphous lanthanide coordination polymers, {[Ln2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2O}n (Ln = Er and Tm), contain two crystallographically independent Ln ions which are both eight‐coordinated by O atoms, but with quite different coordination environments. In both crystal structures, adjacent Ln atoms are bridged by μ3‐OH groups and carboxylate groups of isonicotinate and benzene‐1,2‐dicarboxylate ligands, forming infinite chains in which the Er...Er and Tm...Tm distances are in the ranges 3.622 (3)–3.894 (4) and 3.599 (7)–3.873 (1) Å, respectively. Adjacent chains are further connected through hydrogen bonds and π–π interactions into a three‐dimensional supramolecular framework.  相似文献   

20.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号