首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The noncentrosymmetric space group P3m but a pseudocentric cubic crystal structure were reported for the compound Ni5.20Sn8.7Zn4.16Cu1.04 [Larsson et al. (1994). Acta Cryst. C 50 , 9–12]. The recently described Ni2Sn2Zn shows a closely related structure, although it is centrosymmetric and contains additional voids which are partially occupied. Therefore, a new refinement of Ni5.20Sn8.7Zn4.16Cu1.04 based on the originally published structure factors was performed. The results indicate that the structure can indeed be described in the centrosymmetric space group Pmm; no justification for the absence of the inversion centre could be found within the accuracy of the available data. In comparison with Ni2Sn2Zn, slight but significant differences were confirmed; consequently, the two structures are topologically related but not isotypic.  相似文献   

2.
Work on the ternary Ni–Sn–Zn phase diagram revealed the existence of the title compound pentanickel tetratin zinc, Ni3.17Sn2.67Zn0.67 [Schmetterer et al. (2012). Intermetallics, doi:10.1016/j.intermet.2011.05.025]. It crystallizes in the Ni5Ga3Ge2 structure type (orthorhombic, Cmcm) and is related to the InNi2 type (hexagonal, P63/mmc) of the neighbouring Ni3Sn2 high‐temperature (HT) phase, but is not a superstructure. The crystal structure was determined using single‐crystal X‐ray diffraction. Its homogeneity range was characterized using electron microprobe analysis. Phase analysis at various temperatures indicated that the phase decomposes between 1073 and 1173 K, where a more extended ternary solid solution of the Ni3Sn2 HT phase was found instead.  相似文献   

3.
Two new compounds, Ni3+xSn4Zn (x≈1.35, monoclinic, space group I2/m, Z = 2, single crystal XRD) and Ni6+xSn8Zn (x≈1.35, monoclinic, space group C2/m, Z = 2) are prepared by solid state reaction of the elements (Al2O3 crucible in evacuated quartz tubes, 1453 K).  相似文献   

4.
The cubic La4.87Ni12Sn24 was synthesized in reactions involving liquid Sn. The compound crystallizes in the cubic syngony, space group Im3¯, Z = 2, cell parameter a = 11.9662(14) Å, and is related to the Gd3Ni8Sn16 structure type previously refined from powder X‐ray data. The crystal structure of La4.87Ni12Sn24 was solved and refined using single crystal X‐ray data to final R1 = 2.67%, wR2 = 6.92%. The refinement showed no mixed occupancy with Sn for the La(1) site, contrary to what was proposed for Gd3Ni8Sn16. Instead, a partial occupancy of 87% was detected for the La(1) at 2a. Electronic structure calculations show that the system is metallic, and the density of states at the Fermi level falls at a peak with the highest contribution coming from La(1) atoms, if the compound with ideal occupancies La5Ni12Sn24 is assumed. The deficiency of the La(1) site could therefore originate in the lowering of the total energy of the system due to the loss of 0.39 electrons per formula unit. Magnetic measurement data indicates nearly temperature independent Pauli paramagnetism. Theoretical estimation of the magnetic susceptibility after including core diamagnetic corrections agrees well with experiment.  相似文献   

5.
Nanocatalysts Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 supported on multi‐walled carbon nanotubes (MWCNTs) were successively synthesized by the chemical reduction method in the glycol‐water mixture solvent. Transmission electron microscopy results show that the prepared Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 nanoparticles are uniformly dispersed on the surface of MWCNTs. The average particle sizes of the nanocatalysts are 3.5–3.8 nm. Electroactivity of the prepared catalysts towards oxidation of ethanol, 1‐propanol, 2‐propanol, n‐butanol, iso‐butanol and sec‐butanol (C2? C4 alcohols) in alkaline medium was studied by cyclic voltammetry and chronoamperometry. The current density obtained for the electrooxidation of C2? C4 alcohols depends on the catalysts and the various structures of the alcohols. Addition of Sn or/and Ni to Pd nanoparticles enhances the electroactivity of the Pd/MWCNT catalyst. Furthermore, the ternary Pd8Sn1Ni1/MWCNT catalyst presents the highest electroactivity for the oxidation of C2? C4 alcohols among the prepared catalysts. Electrocatalytic activity order among propanol isomers and butanol isomers is as follows respectively: 1‐propanol > 2‐propanol, and n‐butanol > iso‐butanol > sec‐butanol > tert‐butanol. This is consistent with the Mulliken charge value of the carbon atom bonded with hydroxyl group in the corresponding alcohol molecule.  相似文献   

6.
7.
Dark red crystals of [K‐(2,2,2)‐crypt)]2Sn5 precipitate after the reaction of (2,2,2)‐crypt with a solution of K1.33Sn in liquid ammonia at room temperature. The compound is sensitive to oxidation and hydrolysis. The sequence of Raman bands (104, 120, 133 and 180 cm–1) is characteristic for the trigonal bipyramidal closo‐[Sn5]2– cluster anion. The wave numbers correspond with the data from Hartree‐Fock calculations (114, 128, 142 and 187 cm–1). The compound crystallizes trigonally (a = 11.736 Å, c = 22.117 Å, Z = 2, space group P3c1 (No. 165); Pearson code hP262), isotypic with [Na‐(2,2,2)‐crypt)]2Pb5. The atoms of the cluster show strange anisotropic displacements, which are perfectly reducible to a helical rigid‐body motion around and along [001] (libration: ± 9.5°; translation ± 0.29 Å). The structure can be described as a hierarchical derivative of the initiator CaIn2 (P63/mmc, hP6), generated by an atom‐to‐aggregate replacement: [Ca][In]2 = [Sn5][K @ C36H72N4O12]2. Thus, the distribution of the [Sn5]2– Zintl anions is hexagonal primitive, and the cation complexes are located close to the centers of trigonal superprisms formed by Sn5 clusters.  相似文献   

8.
Presented are the ionothermal syntheses, characterizations, and properties of a series of two‐ and three‐dimensional selenidostannate compounds synergistically directed by metal–amine complex (MAC) cations and ionic liquids (ILs) of [Bmmim]Cl (Bmmim=1‐butyl‐2,3‐dimethylimidazolium). Four selenidostannates, namely, 2D‐(Bmmim)3[Ni(en)3]2[Sn9Se21]Cl ( 1 , en=ethylenediamine), 2D‐(Bmmim)8[Ni2(teta)2(μ‐teta)]Sn18Se42 ( 2 , teta=triethylenetetramine), 2D‐(Bmmim)4[Ni(tepa)Cl]2[Ni(tepa)Sn12Se28] ( 3 , tepa=tetraethylenepentamine), and 3D‐(Bmmim)2[Ni(1,2‐pda)3]Sn8Se18 ( 4 , 1,2‐pda=1,2‐diaminopropane), were obtained. Single‐crystal X‐ray diffraction analyses revealed that compounds 1 and 2 possess a lamellar anionic [Sn3Se7]n2n? structure comprising distinct eight‐membered ring units, whereas 3 features a MAC‐decorated anionic [Ni(tepa)Sn12Se28]n6n? layered structure. In contrast to 1 – 3 , compound 4 exhibits a 3D open framework of anionic [Sn4Se9]n2n?. The structural variation from 1 to 4 clearly indicates that on the basis of the synergistic structure‐directing ability of the MACs and ILs, variation of the organic polyamine ligand has a significant impact on the formation of selenidostannates.  相似文献   

9.
The binary intermetallic compound NiMg2 (own structure type) forms a pronounced solid solution NiMg2?xSnx. The structure of NiMg1.85(1)Sn0.15(1) was refined on the basis of single crystal X‐ray data: P6422, a = 520.16(7), c = 1326.9(1) pm, wR2 = 0.0693, 464 F2 values, and 20 variables. With increasing magnesium/tin substitution, the structure type changes. Crystals with x = 0.22 and 0.40 adopt the orthorhombic CuMg2 type: Fddd, a = 911.0(2), b = 514.6(1), c = 1777.0(4) pm, wR2 = 0.0427, 394 F2 values for NiMg1.78(1)Sn0.22(1), and a = 909.4(1), b = 512.9(1), c = 1775.6(1) pm, wR2 = 0.0445, 307 F2 values for NiMg1.60(1)Sn0.40(1) with 19 variables per refinement. The nickel atoms build up almost linear chains with Ni–Ni distances between 260 and 263 pm in both modifications where each nickel atom has coordination number 10 with two nickel and eight Mg/Sn neighbors. Both magnesium sites in the NiMg2 and CuMg2 type structures show Mg/Sn mixing. The Ni polyhedra are condensed leading to dense layers which show a different stacking sequence in both structure types. The crystal chemical peculiarities of these intermetallics are briefly discussed.  相似文献   

10.
Homo‐ and heteronuclear meso,meso‐(E)‐ethene‐1,2‐diyl‐linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15‐triphenylporphyrin (TriPP) on both ends of the ethene‐1,2‐diyl bridge M210 (M2=H2/Ni, Ni2, Ni/Zn, H4, H2Zn, Zn2) and 5,15‐bis(3,5‐di‐tert‐butylphenyl)porphyrinato‐nickel(II) on one end and H2, Ni, and ZnTriPP on the other ( M211 ), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni2 bis(TriPP) complex Ni210 , single crystal X‐ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of NiII porphyrins, and the (E)‐C2H2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H410 and H2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas‐phase optimized geometry of Ni210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV.  相似文献   

11.
A systematic approach to the formation of endohedrally filled atom clusters by a high‐temperature route instead of the more frequent multistep syntheses in solution is presented. Zintl phases Na12Ni1?xSn17 and K13?xCo1?xSn17, containing endohedrally filled intermetalloid clusters [Ni@Sn9]4? or [Co@Sn9]5? beside [Sn4]4?, are obtained from high‐temperature reactions. The arrangement of [Ni@Sn9]4? or [Co@Sn9]5? and [Sn4]4? clusters, which are present in the ratio 1:2, can be regarded as a hierarchical replacement variant of the hexagonal Laves phase MgZn2 on the Mg and Zn positions, respectively. The alkali‐metal positions are considered for the first time in the hierarchical relationship, which leads to a comprehensive topological parallel and a better understanding of the composition of these compounds. The positions of the alkali‐metal atoms in the title compounds are related to the known inclusion of hydrogen atoms in the voids of Laves phases. The inclusion of Co atoms in the {Sn9} cages correlates strongly with the number of K vacancies in K13?xCo1?xSn17 and K5?xCo1?xSn9, and consequently, all compounds correspond to diamagnetic valence compounds. Owing to their diamagnetism, K13?xCo1?xSn17, and K5?xCo1?xSn9, as well as the d‐block metal free binary compounds K12Sn17 and K4Sn9, were characterized for the first time by 119Sn solid‐state NMR spectroscopy.  相似文献   

12.
1,4‐butanediamine (BEA) is incorporated into FASnI3 (FA=formamidinium) to develop a series of lead‐free low‐dimensional Dion–Jacobson‐phase perovskites, (BEA)FAn?1SnnI3n+1. The broadness of the (BEA)FA2Sn3I10 band gap appears to be influenced by the structural distortion owing to high symmetry. The introduction of BEA ligand stabilizes the low‐dimensional perovskite structure (formation energy ca. 106 j mol?1), which inhibits the oxidation of Sn2+. The compact (BEA)FA2Sn3I10 dominated film enables a weakened carrier localization mechanism with a charge transfer time of only 0.36 ps among the quantum wells, resulting in a carrier diffusion length over 450 nm for electrons and 340 nm for holes, respectively. Solar cell fabrication with (BEA)FA2Sn3I10 delivers a power conversion efficiency (PCE) of 6.43 % with negligible hysteresis. The devices can retain over 90 % of their initial PCE after 1000 h without encapsulation under N2 environment.  相似文献   

13.
Herein, we highlight redox‐inert Zn2+ in spinel‐type oxide (ZnXNi1?XCo2O4) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn2+ segregation has been identified experimentally and theoretically under oxygen‐evolving condition, the newly formed VZn?O?Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn–air battery is constituted employing the structurally optimized Zn0.4Ni0.6Co2O4 nanoparticles supported on N‐doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm?2), high open circuit potential (1.48 V vs. Zn), excellent durability, and high‐rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of ZnXNi1?XCo2O4 oxides after the OER test.  相似文献   

14.
Efficient electrochemical reduction of CO2 and H2O into industrial syngas with tunable CO/H2 ratios, especially integrated with anodic organic synthesis to replace the low‐value oxygen evolution reaction (OER), is highly desirable. Here, integration of controllable partial substitution of zinc (Zn) with amine incorporation into CdS‐amine inorganic‐organic hybrids is used to generate highly efficient electrocatalysts for synthesizing syngas with tunable CO/H2 ratios (0–19.7), which are important feedstocks for the Fischer–Tropsch process. Diethylenetriamine could enhance the adsorption and accelerate the activation of CO2 to form the key intermediate COOH* for CO formation. Zn substitution promoted the hydrogen evolution reaction (HER), leading to tunable CO/H2 ratios. Importantly, syngas and dihydroisoquinoline can be simultaneously synthesized by pairing with anodic semi‐oxidation of tetrahydroisoquinoline in a ZnxCd1?xS‐Amine ∥ Ni2P two‐electrode electrolyzer.  相似文献   

15.
The title racemic heterometallic dinuclear compound, [MnSn(C2H2O2S)3(H2O)5], (I), contains one main group SnIV metal centre and one transition metal MnII centre, and, by design, links the MnII centre to the building unit of the (Δ/Λ) [SnL3]2− complex anion (L is the 2‐sulfidoacetate dianion). In this cluster, the SnIV centre of the (Δ/Λ) [SnL3]2− unit is coordinated by three O atoms and three S atoms from three L ligands to form an [SnO3S3] octahedral coordination environment. The MnII centre is in an [MnO6] octahedral coordination environment, with five O atoms from five water molecules and the sixth from the μ2L ligand of the (Δ/Λ) [SnL3]2− unit. Between adjacent dinuclear molecules, there are many hydrogen‐bond interactions of O—H...O, O—H...S, C—H...O and C—H...S types. Of these, eight pairs of O—H...O hydrogen bonds fuse all the dinuclear molecules into two‐dimensional supramolecular sheets along the bc plane. Adjacent supramolecular sheets are further connected through O—H...S hydrogen bonds to give a three‐dimensional supramolecular network.  相似文献   

16.
易清风  黄武  于文强  李磊  刘小平 《中国化学》2008,26(8):1367-1372
利用电热法,一步制备出新型的钛基Ni-Sn/Ti电极(Ni8Sn/Ti, Ni7Sn3/Ti 和 Ni/Ti)。扫描电镜(SEM)图像表明,催化剂以片状的纳米颗粒形式沉积于钛基体上。利用电化学伏安技术、电位阶跃法和电化学交流阻抗谱(EIS),研究了这些电极在1mol.L�1NaOH溶液中对甲醇氧化反应的电催化活性。研究表明,与Ni7Sn3/Ti,Ni/Ti以及多晶镍电极相比,Ni8Sn/Ti电极对甲醇氧化反应表现出更高的阳极氧化电流和更低的起始电位。EIS分析表明,在本文所考察的阳极电位和甲醇浓度下,Ni8Sn/Ti电极对甲醇氧化反应显示出极低的电荷传递电阻。结果表明,这种新型的钛基Ni8Sn/Ti电极对甲醇氧化反应具有极高的电催化活性。  相似文献   

17.
Two new metal–organic frameworks (MOFs), namely, three‐dimensional poly[diaquabis{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}bis(μ2‐glutarato)dinickel(II)] monohydrate], {[Ni2(C5H6O4)2(C16H18N4)2(H2O)2]·H2O}n or {[Ni2(Glu)2(1,4‐mbix)2(H2O)2]·H2O}n, ( I ), and two‐dimensional poly[[{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}(μ2‐glutarato)zinc(II)] tetrahydrate], {[Zn(C5H6O4)(C16H18N4)]·4H2O}n or {[Zn(Glu)(1,4‐mbix)]·4H2O}n ( II ), have been synthesized hydrothermally using glutarate (Glu2?) mixed with 1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene (1,4‐mbix), and characterized by single‐crystal X‐ray diffraction, IR and UV–Vis spectroscopy, powder X‐ray diffraction, and thermogravimetric and photoluminescence analyses. NiII MOF ( I ) shows a 4‐connected 3D framework with point symbol 66, but is not a typical dia network. ZnII MOF ( II ) displays a two‐dimensional 44‐ sql network with one‐dimensional water chains penetrating the grids along the c direction. The solid‐state photoluminescence analysis of ( II ) was performed at room temperature and the MOF exhibits highly selective sensing toward Fe3+ and Cr2O72? ions in aqueous solution.  相似文献   

18.
The reactions of 4N‐ethyl‐2‐[1‐(pyrrol‐2‐yl)methylidene(hydrazine carbothioamide ( 4 EL1 ) and 4N‐ethyl‐2[1‐(pyrrol‐2‐yl)ethylidene(hydrazine carbothioamide ( 4 EL2 ) with Group 12 metal halides afforded complexes of types [M(L)2X2] (M = Zn, Cd; L = 4 EL1, 4 EL2; X = Cl, Br, I; 1 – 6 , 14 – 19 ) and [M(L)X2] (M = Hg; L = 4 EL1, 4 EL2; X = Cl, Br, I; 7 – 9 , 20 – 22 ). In addition, reaction of 4 EL1 with salts of CuII, NiII, PdII and PtII afforded compounds of type [M(4 EL1–H)2] ( 10 – 13 ). The new compounds were characterized by elemental analysis, FAB mass spectrometry, IR and electronic spectroscopy and, for sufficiently soluble compounds, 1H, 13C and, when appropriate, 113Cd or 199Hg NMR spectrometry. The spectral data suggest that in their complexes with Group 12 metal cations, both thiosemicarbazones are neutral and S‐monodentate; and for [Zn(4 EL1)2I2] ( 3 ), [Cd(4 EL1)2Br2] ( 5 ) and [Hg(4 EL1)Cl2]2 ( 7 ) this was confirmed by X‐ray diffractometry. By contrast, in its complexes with CuII and Group 10 metal cations, 4 EL1 is monodeprotonated and S,N‐bidentate, as was confirmed by X‐ray diffractometry for [Ni(4 EL1–H)2] ( 11 ) and [Pd(4 EL1–H)2] ( 12 ).  相似文献   

19.
In the crystal structures of both title compounds, [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]nickel(II) [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]nickel(II) chloride methanol disolvate, [Ni(C26H25.5N3O3)]2Cl·2CH4O, and [1,3‐bis(2‐hydroxybenzylidene)‐2‐methyl‐2‐(2‐oxidobenzylideneaminomethyl)propane‐1,3‐diamine]zinc(II) perchlorate [2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methyl‐1,3‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine]zinc(II) methanol trisolvate, [Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4O, the 3d metal ion is in an approximately octahedral environment composed of three facially coordinated imine N atoms and three phenol O atoms. The two mononuclear units are linked by three phenol–phenolate O—H...O hydrogen bonds to form a dimeric structure. In the Ni compound, the asymmetric unit consists of one mononuclear unit, one‐half of a chloride anion and a methanol solvent molecule. In the O—H...O hydrogen bonds, two H atoms are located near the centre of O...O and one H atom is disordered over two positions. The NiII compound is thus formulated as [Ni(H1.5L)]2Cl·2CH3OH [H3L is 1,3‐bis(2‐hydroxybenzylidene)‐2‐(2‐hydroxybenzylideneaminomethyl)‐2‐methylpropane‐1,3‐diamine]. In the analogous ZnII compound, the asymmetric unit consists of two crystallographically independent mononuclear units, one perchlorate anion and three methanol solvent molecules. The mode of hydrogen bonding connecting the two mononuclear units is slightly different, and the formula can be written as [Zn(H2L)]ClO4·[Zn(HL)]·3CH3OH. In both compounds, each mononuclear unit is chiral with either a Δ or a Λ configuration because of the screw coordination arrangement of the achiral tripodal ligand around the 3d metal ion. In the dimeric structure, molecules with Δ–Δ and Λ–Λ pairs co‐exist in the crystal structure to form a racemic crystal. A notable difference is observed between the M—O(phenol) and M—O(phenolate) bond lengths, the former being longer than the latter. In addition, as the ionic radius of the metal ion decreases, the M—O and M—N bond distances decrease.  相似文献   

20.
The Ni2P@Cd0.5Zn0.5S nanoparticles photocatalyzed self‐coupling of p‐xylene was reported here, and the corresponding coupling product 1,2‐di‐p‐tolylethane was obtained. The reaction could be extended to toluene derivatives with electron‐donating and electron‐withdrawing substituents. Ni2P@Cd0.5Zn0.5S nanoparticles had already been characterized by XRD, ICP‐AES, SEM, TEM, UV/Vis, FL, XPS. The Mott–Schottky curves of Ni2P@Cd0.5Zn0.5S were made through electrochemical methods. An active carbon free‐radical was captured through ESR measurement under irradiation. The research demonstrated this photocatalytic system feasible for the self‐coupling reaction of toluene derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号