首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
利用碳化硅压腔装置研究了高压下重晶石的S-O对称伸缩振动v987和对称弯曲振动v452及v462的拉曼光谱变化特征.实验结果表明:在常温和0~1GPa压力范围内重晶石稳定,其拉曼谱峰随压力升高向高波数方向移动,二者的关系表达式分别为:v987=0.004 4p+987.42,v452=0.002 3p+452.6,v462=0.001 8p+462.42,而且伸缩振动受压力的影响比弯曲振动大.重晶石的987 cm-1拉曼谱峰强度约为石英464 cm-1拉曼谱峰的六倍,可作为压腔中良好的压力标定物.实验得到压力与重晶石987 cm-1峰偏移量的关系为:p(MPa)=223.16×(△vp)987-90.35(987 cm-1相似文献   

2.
利用碳化硅压腔结合拉曼光谱分析技术,研究了常温0.1~2GPa压力下文石的拉曼光谱特征,并得出文石拉曼位移与压力之间的关系:ν153(cm-1)=0.0035p(MPa)+154.0,ν206=0.0060p+206.3,ν704=0.0021p+704.2,ν1085=0.0035p+1085.3。在实验的压力范围内,未观察到文石的相变。另外,与其他碳酸盐矿物(菱镁矿、白云石)类似,0~2GPa压力下文石的对称伸缩振动拉曼位移随压力变化的dν1025/dp值大于超高压条件下的dν1025/dp值,表明碳酸盐矿物[CO3]基团中C—O键的可压缩性和压力有关,其可压缩性在0.1~2GPa时较大,压力升高可压缩性降低。  相似文献   

3.
利用氧化锆压腔在0~1.0 GPa和29 ℃条件下对液态丙三醇进行了拉曼光谱测量。实验结果表明,丙三醇的拉曼位移在2 800~3 000 cm-1范围内的CH和CH2的伸缩振动谱峰随着压力的增大均连续向高波数位移,其拉曼位移与压力的关系可以表示为:ν(CH)=0.009 2P+2 886.67和ν(CH2)=0.009 4P+2 948.53。另一方面处理实验结果时发现,在0~1.0 GPa下丙三醇的ν(CH2)拉曼位移可以进行压力标定,给出了以丙三醇作为压力标定计时的压力标定方程:P=106.4ν-3.14×105。  相似文献   

4.
实验利用金刚石压腔装置研究了常温和0.1~1 400 MPa范围内黄铜矿A1振动模式的原位拉曼光谱特征。结果显示在实验条件范围内,该拉曼振动峰的强度和形态保持稳定,表明晶格内Cu-S和Fe-S间的相互作用没有发生质变。实验发现黄铜矿该拉曼振动的波数随着压力升高连续向高频方向移动,两者的线性关系为:ν290=0.031 2p+290.60(0.1≤p<58.8 MPa)和ν290=0.005 72p+292.10(58.8≤p<1 400 MPa)dν/dp。常温下58.8 MPa是黄铜矿该拉曼波数随压力变化率的一个突变点,低于和高于该压力时分别为31.2和5.72 cm-1·GPa-1,显著的差异表明黄铜矿的结构可能发生了某种改变。  相似文献   

5.
常温、1.0~4.4GPa下,利用激光拉曼光谱研究了奥长石晶体结构随压力的变化。发现,压力为2.9GPa时,517cm-1附近出现新的谱峰,奥长石开始相变。3.4GPa时,源于奥长石结构中M—O伸缩振动的288cm-1拉曼谱峰频移发生突变,517cm-1附近谱峰消失,奥长石由三斜晶系完全相变为单斜晶系(P1-I1)。随压力增加,归属于奥长石四面体结构中Si—O—Si弯曲振动的458及516cm-1谱峰随压力增加有规律地向高频方向偏移,斜率分别是1.667cm-1/GPa和3.560cm-1/GPa,而源于Al—O—Al弯曲振动的480cm-1谱峰与压力没有明显的线性变化关系。卸压过程中,288cm-1拉曼谱峰频移保持不变,458,480及516cm-1谱峰向低频偏移。长石类矿物的相变压力与结构中八元环所含阳离子种类有关。  相似文献   

6.
0.1~800 MPa压力下方解石拉曼光谱的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 利用石英的拉曼谱峰与温度和压力的关系,检验了在金刚石压腔中用方解石拉曼谱峰确定体系压力的可行性,并初步确定了在常温下方解石的拉曼谱峰与压力的关系。实验研究结果表明:在实验的压力范围内方解石稳定,且其1 085 cm-1 谱峰约为石英464 cm-1谱峰的3倍强度,因此非常适合作为热液金刚石压腔的压力标定物。在温度26 ℃、压力0.1~800 MPa条件下,方解石的拉曼谱峰(1 085 cm-1)随着压力的增加,呈线形增大,其关系式为:p(MPa)=192×(νp-1 085)-21.8,1 085 cm-1p<1 090 cm-1。  相似文献   

7.
在200℃,0.95~7.70 GPa下,利用激光拉曼光谱技术研究了天然斜绿泥石晶体结构随压力的变化。在200℃,斜绿泥石481和786 cm-1谱峰随压力增加有规律地向高频方向偏移,拉曼位移(N,cm-1)与压力(P,GPa)的线性关系分别为:N=11.136P+482.6(R2=0.987 4)和N=5.055P+785.7(R2=0.983 7)。由于四面体层T阳离子与TOT层八面体M阳离子之间产生强烈的排斥作用,使Si—Onb键能增强,导致硅氧四面体层中Si—Onb键伸缩振动的865 cm-1谱峰随压力没有明显的频移。481和786 cm-1谱峰分别对应斜绿泥石晶体结构中M4八面体中M—Obr伸缩振动和Si—Obr—Si伸缩振动,频移说明M—Obr和Si—Obr键长缩短。在实验条件下绿泥石没有发生相变。研究结果说明,在某些冷俯冲带,绿泥石至少在80~90 km深部可能稳定存在,绿泥石脱水及其产生的流体可能是俯冲带地震孕育和发生的重要因素。  相似文献   

8.
在24 ℃和0.1~900 MPa压力下测量了含50%水的乙醇溶液和纯乙醇的激光拉曼光谱。研究结果表明,纯乙醇和50%乙醇溶液中的C—H基团振动波数均随压力的增大而增大,它们的各振动峰与压力的关系分别为: 纯乙醇: ν1=2 881.890+0.001 27 P+6.213×10-6 P2;ν2=2 928.707+0.004 38 P+4.772×10-6 P2;ν3=2 973.457+0.008 89 P+3.245×10-6 P2;50%乙醇溶液: ν1 =2 885.616+0.010 8 P-2.699×10-6 P2;ν2 =2 932.734+0.013 7 P-3.346×10-6 P2;ν3 =2 978.115+0.016 5 P-4.914×10-6 P2。另外,还观察到在低于550 MPa压力范围,50%乙醇溶液中的氢键强度随压力的增大而明显增加,550 MPa以上压力时不再随压力而发生变化。  相似文献   

9.
Liu J  Sun Q 《光谱学与光谱分析》2010,30(9):2390-2392
在金刚石压腔中,硅油作为传压介质,红宅石作为压标,在298.1 K,0.1~5 140.2 MPa下对硅油C-H伸缩振动圪v2906和v2967进行了拉曼光谱的原位测量.实验结果表明:在实验压力范同内,硅油v2906和v2967的拉曼位移与压力具有良好的线性关系.此外,探讨了在实验条件内利用压力介质硅油v2906和v2967的拉曼位移作为压力计的可行性,并且得到了硅油在298.1 K下的压力标定公式:p=0.14[(△vP)2906]2+81.92(△vP)2906+92.01,R2=0.99和P=-0.05[(△vP)v2967]2+73.07(△vP)2967+91.54,R2=0.98(0.1~5 140.2 MPa).  相似文献   

10.
压力可以引起蛋白折叠与变性。作为蛋白质的基本构成单位,氨基酸在高压下的变化近来年备受关注。在常见的20种氨基酸中,学者们利用高压拉曼技术已研究了多种氨基酸在高压下的变化,研究的最高压力达到30 GPa。为了探究L-丝氨酸(C3H7NO3)在极高压力下的结构变化情况,采用原位高压拉曼技术在常温下对L-丝氨酸晶体进行研究,最高压力达到22.6 GPa。研究发现,当压力达到2.7 GPa时,在102 cm-1处出现新峰,在1 123 cm-1(NH3反对称摇摆振动)处的特征峰出现劈裂;当压力达到5.4 GPa时,L-丝氨酸晶体在574 cm-1处出现新峰,同时原来164 cm-1处峰消失;当压力达到6.0 GPa时,位于226,456,770和2 968 cm-1(CH2伸缩振动)等处出现新峰,877 cm-1处的CC伸缩振动峰发生劈裂,产生894 cm-1新峰;当压力达到7.9 GPa时,在145,151和2 946 cm-1等出现新峰,同时原在CO2摇摆振动峰的肩峰531 cm-1消失;当压力达到11.0 GPa时,位于249 cm-1处的振动峰开始劈叉,在241 cm-1处形成新峰,位于2 956 cm-1(CH2伸缩振动)同时原位于391和431 cm-1处的峰消失;当压力达到17.5 GPa时,在200 cm-1处出现新峰。通过进一步分析L-丝氨酸的拉曼波数随压力的变化,发现很多拉曼峰在1.37,2.2,5.3,7.46和11.0 GPa以及15.5 GPa等压力点处都出现了拐点。其结果表明:L-丝氨酸在0.1~22.6 GPa之间共发生7处结构相变,分别位于压力区间0.1~1.37,2.2~2.7,5.3,6.0,7.46~7.9,10.1~11.0和15.5~17.5 GPa之间。而且,在6.0 GPa新的相变点在之前文献中未论述过。由于L-丝氨酸晶体在6.0 GPa时CC伸缩振动峰发生劈裂,这现象可能是由于压力引起L-丝氨酸晶体分子发生重排导致的,同时L-丝氨酸晶体分子重排导致氢键发生重排,使得L-丝氨酸晶体出现新的CH2伸缩振动峰。L-丝氨酸晶体在10.1~11.0 GPa之间的拉曼光谱变化主要集中在低波数段,该波数段的拉曼振动模式主要与晶体晶格振动等低能量振动有关。同时在高波数段出现新的CH2峰,由此可推测在10.1~11.0 GPa之间,L-丝氨酸晶体的晶格振动发生变化,产生了新的氢键,从而导致了L-丝氨酸晶体结构的改变。L-丝氨酸晶体在15.5~17.5 GPa之间,由于没有发现直接证据证明其发生结构相变,只是在拉曼波数随压力变化中,发现其在17.5 GPa时出现拐点,因此推测L-丝氨酸晶体在15.5~17.5 GPa之间可能发生结构相变。  相似文献   

11.
高压下正己醇的拉曼光谱研究   总被引:1,自引:0,他引:1  
利用碳化硅压腔在25 ℃和163.4~793.4 MPa条件下对正己醇进行了拉曼光谱研究。发现在163.4~767.6 MPa压力下正己醇性质稳定,没有相变发生。在此压力条件下,CH对称伸缩振动和反对称伸缩振动的波峰都随着压力的增大而向高波数偏移,拉曼位移与压力的关系分别为ν2 876=0.009 1P+2 875.1和ν2 931=0.005 7P+2 930.5。到793.4 MPa压力条件下出现了结冰现象。在前人资料的基础上,对甲醇、乙醇和正己醇等醇类的高压性质进行了对比,发现CH对称伸缩振动的波峰偏移与压力的关系不受CC键的影响,即与碳原子数无关。  相似文献   

12.
高压液态重水的拉曼光谱研究   总被引:2,自引:1,他引:1  
应用金刚石压腔结合拉曼光谱技术研究了重水在291 K,0.1~800 MPa条件下的拉曼谱图。结果表明:压力增大的过程中,重水的拉曼伸缩振动光谱向低频方向移动,并且频移和压力基本呈线性相关。频移没有突变,没有发生相的转变。将重水的拉曼谱峰分解为代表分子内O—D振动的高频峰和代表分子间氢键振动的低频峰。研究这两种不同类型谱峰的性质,发现代表分子间氢键的低频峰峰面积在不同的压力范围内呈现出不同的变化特征,压力对分子间氢键的影响并不是持续不变的。拉曼峰的峰面积反映的是产生这种拉曼峰的振动的数目,峰面积的变化反映了特征振动数目的变化。由于分子间氢键的强相互作用,水分子总是倾向于形成对称的空间五分子四面体结构,因此最大峰面积代表了最稳定的五分子团簇结构。  相似文献   

13.
测定了DL-2-氨基-4-磺酸基-丁酸 [DLH, DL-Homocysteic acid, (NH+3)-CH(COOH)-(CH2)2-SO-3] 及其稀土La配合物[La(DLH)2Cl3·H2O=LaL2]在不同压力下的红外和拉曼光谱。DLH 在50 kbar左右压力以下存在两个压力诱导相转变区,它们分别在17和37 kbar左右,两者均为二级相转变,认为分子间氢键的存在是出现两个压力诱导相转变区的原因。在红外光谱中,SO-3的对称伸缩振动的压力灵敏度(dν/dp)表现出与其他振动模式不同的变化趋势,它们在低压相区的平均压力灵敏度为0.30 cm-1·(kbar)-1、中压相区为0.32 cm-1·(kbar)-1、高压相区为0.41 cm-1·(kbar)-1,低压相区与高压相区的比值为0.72, 而其他振动模式刚好相反,低压相区与高压相区的比值为4.8。稀土La配合物LaL2的生成,改变了分子间的氢键,在50 kbar左右压力以下只观察到1个压力诱导相转变区(27 kbar附近)。在红外光谱中,配合物LaL2中SO-3的反对称伸缩振动的压力灵敏度(dν/dp)也表现出与其他振动模式不同的变化趋势,它们在低压相区的平均压力灵敏度与高压相区的平均压力灵敏度的比值为0.43, 而其他振动模式的比值为2.5。  相似文献   

14.
利用活塞圆筒装置在1.2 GPa,1 473 K的条件下合成了白硅钙石。采用外加热装置和金刚石压腔结合拉曼光谱分析技术,采集了白硅钙石298,353,463,543,663,773以及873 K温度区间的常压及1 atm~14.36 GPa(常温)压力区间的拉曼谱图。扫描电镜下,该研究合成的样品为结构一致的单一相,颗粒大小为10~20 μm。电子探针分析结果表明,样品的组成为Ca7.03(2)Mg0.98(2)Si3.94(2)O16,该组分完全吻合白硅钙石理论组分。Raman分析结果表明,高温时白硅钙石的拉曼谱图中具有29个振动峰。随着温度的升高,部分振动峰出现了合并或者弱化消失的现象。该现象尤其以800~1 200 cm-1范围内的909,927和950 cm-1振动峰峰位最为明显,这些振动峰分别在873,773以及873 K时弱化消失。据此,白硅钙石的结构在实验温压范围内稳定,且随着温度和压力的升高,其拉曼振动峰峰位分别呈现往低频和高频方向线性飘移的趋势。除此之外,根据高温和高压拉曼实验的结果,分别计算了白硅钙石拉曼振动峰峰位的等压mode-Grüneisen参数和等温mode-Grüneisen参数,其算术平均值分别为1.47(2)和0.45(3)。最后结合高温和高压拉曼实验的结果,计算了白硅钙石的非谐系数,结果表明,Si-O振动模式对于非谐效应的贡献要小于其他振动模式。  相似文献   

15.
利用金刚石压腔结合拉曼光谱分析技术,研究了文石在18~388 ℃,71~2 014 MPa,以及方解石在19~351 ℃,96~1 823 MPa条件下的拉曼光谱特征,并得到文石和方解石的拉曼位移与温度、 压力三者之间的关系式。研究结果表明,文石和方解石的拉曼位移随温度压力的变化规律相似,都随压力升高向高频移动,除文石的704 cm-1外均随温度升高向低频移动。二者的晶格振动νi/T值均大于[CO3]基团内振动的值,说明CaO6八面体的热膨胀性大于[CO3]基团的热膨胀性。二者的对称伸缩振动ν/T及ν/P值不同,由于该振动拉曼位移和C—O键的键长有关,方解石的C—O键的热膨胀性比文石小而可压缩性比文石大。另外升温升压过程中文石和方解石可以相互转化,伴随该过程发生的[CO3]基团旋转变形等动力学因素也可以造成二者νi/T和νi/P值差异。  相似文献   

16.
 利用金刚石压腔测定了26 ℃高压下水的O—H伸缩振动拉曼谱峰的变化,并对其进行分峰处理,初步确定了水的拉曼拟合峰ν3 244的峰位置与体系压力的关系,且论证了利用水的拉曼拟合峰ν3 244的变化标定金刚石压腔压力的优点以及应用上的局限性。实验结果表明:26 ℃时,在实验的压力范围内,由水的拉曼谱峰拟合得到的ν3 244峰位置随着体系压力的增加呈线性减小。其关系式为p (MPa)=32.9(νp)3 244+200.7(3 215 cm-1< ν3 244<3 244 cm-1)。  相似文献   

17.
 利用金刚石压腔装置测量了高压下石膏中S—O键的4种振动模式和结晶水中羟基伸缩振动Raman位移,研究结果表明:在常温(25 ℃)和100~800 MPa压力范围内,石膏中S—O键的Raman谱峰的位移随压力的增加而向高波数方向移动,结晶水中羟基的两个伸缩谱峰随着压力的增加而向低波数方向移动,同时得到了各个谱峰与压力之间的关系式,其中结晶水中羟基的两个伸缩谱峰的dν/dp值有较大不同,是由于结晶水中含有两个强度不同的氢键所致。  相似文献   

18.
本文测试了TeO2-ZnO和TeO2-BaO两种二元系统不同金属氧化物浓度下玻璃的拉曼光谱,通过比较这两种碲酸盐玻璃系统拉曼光谱的异同,表明碲酸盐玻璃系统中随着金属氧化物浓度的增加,使玻璃网络中的TeO4双三角锥向TeO3三角棱锥转化,并且在TeO2-BaO二元玻璃中出现了非桥氧键。同时初步研究了TeO2-ZnO-Na2O三元玻璃的拉曼光谱,发现当TeO2-ZnO二元玻璃中加入5mol%的Na2O时,其结构并没有发生显著的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号