首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以Tenax-TA、Carboxen 1000和Carbosieve SⅢ为采样管填充料,将植物源挥发性有机物吸附于采样管内,样品通过二次热解吸仪解吸后,随载气进入气相色谱仪,采用氢火焰离子化检测器(FID)测定,建立了利用二次热解吸仪与气相色谱联用技术测定植物挥发性有机物的分析方法。载气N2流速为30 mL/min,60℃下吹扫吸附管2 min,然后在250℃下解吸吸附管5 min,冷却1 min后,在275℃下解吸聚焦管3 min,样品经传输线进入气相色谱。气相色谱载气N2压力为190 kPa,FID检测器温度280℃;进样口温度225℃;初始柱温40℃,停留5 min,以2℃/min升温至120℃,保留1 min,然后以20℃/min升温至200℃,保留10 min。方法重现性好,精密度高,线性相关系数大于0.99;检出限均低于9×10-9g/L;解吸效率大于96%,适用于植物源挥发性有机物的测定。  相似文献   

2.
对7家新装修居室内在装修过程中产生的挥发性有机化合物,通过气相色谱法并采用混合吸附剂(活性炭0.4 g HaySep D 0.6 g)吸附,用CH2Cl2做淋洗液进行了测定。  相似文献   

3.
采用顶空毛细管柱GC–MS法测定饮用水中卤代烃、苯系物、氯苯等15种挥发性有机物。色谱柱为DB–624石英毛细管柱(60 m×0.25 mm,1.8μm),程序升温,直接进样顶空毛细管柱气质联用法同时测定饮用水中15种挥发性有机物。该方法具有良好的线性,线性相关系数均大于0.996。方法的检出限为0.10~0.22μg/L。15种挥发性有机物的平均回收率在94%~103%之间,测定结果的相对标准差为2.9%~6.7%(n=7)。该方法简便、快速,检测结果均能满足GB 5749–2006检测要求。  相似文献   

4.
研究了富勒烯烟炱对挥发性有机物(VOCs)的吸附作用.17种VOCs气体在烟炱上的比保留体积Vg20为17.4~2634L/g.富勒烯烟炱充填的吸附管对VOCs气体的吸附-热脱附回收率在40.8%~117%之间,大部分为(100±20)%.结果表明,富勒烯烟炱能够用于吸收和富集大气中痕量的VOCs  相似文献   

5.
提出了顶空-气相色谱-质谱法(HS-GC-MS)测定卫生巾中55种挥发性有机物含量的方法。将卫生巾样品剪碎,采用自动顶空进样方式,于110℃下低速振荡15 min,用DB-624色谱柱(60 m×0.25 mm, 1.40μm)分离和质谱检测样品中55种挥发性有机物,外标法定量。结果表明,55种挥发性有机物的质量分数均在0.080~2.000μg·g-1内与其对应的峰面积呈线性关系,测定下限(10S/N)为0.000 3~0.031 0μg·g-1。按照标准加入法进行回收试验,回收率为81.3%~119%,测定值的相对标准偏差(n=6)均小于9.0%。方法用于实际卫生巾样品的分析,结果显示多种挥发性有机物被检出,1,3,5-三甲苯的检出率高达89.3%,氯甲烷检出量高达10.688μg·g-1。  相似文献   

6.
采用电子鼻对卷烟烟丝挥发性组分进行分析,分别考察了前处理制样与电子鼻顶空平衡时间对结果的影响。确定采用三包卷烟的烟丝作为大样本,混合均匀后称取适量样品直接电子鼻分析,电子鼻顶空平衡温度为55℃。应用电子鼻在该参数下对不同烘丝方式和温度参数处理的卷烟烟丝挥发性成分进行气味指纹图谱和PCA分析,同连续流动法测定的常规化学成分结果作了比较,结果表明电子鼻能够反映规常规化学成分检测手段不能区分的不同烘丝过程带来的挥发性组分改变。  相似文献   

7.
建立了超声辅助基质分散液-液微萃取(UA-DLLME)/气相色谱-串联质谱(GC-MS)同时测定地下和地表水中15种硝基苯、19种苯胺和14种邻苯二甲酸酯类化合物的分析方法。采用Plackett-Burman设计从萃取剂、分散剂体积、萃取温度、萃取时间和离子强度等变量中筛选最显著的影响因素,并利用中心组合设计(CCD)结合响应曲面图优化显著因素,最终确定最佳的萃取条件:10 mL水样在2 g/L NaCl条件下迅速加入0.65 mL乙腈(分散剂)和40μL四氯化碳(萃取剂),于40℃超声2 min,混合液以3 500 r/min离心3 min。结果显示,目标分析物在1~200μg/L质量浓度范围内线性良好,相关系数不低于0.995 8,方法的检出限(MDL)为0.001~0.030μg/L,定量下限(LOQ)为0.004~0.120μg/L,在低、中、高3个加标浓度下的平均回收率为77.4%~113%,相对标准偏差(RSD)均不高于9.6%(n=6)。  相似文献   

8.
赵迪  沈铮  闫晓辉  吴大朋  丁坤  关亚风 《分析化学》2013,41(8):1153-1158
基于多孔膜萃取水中挥发性有机物和微捕集技术,构建了一套水中挥发性有机物(Volatile OrganicCompounds,VOCs)样品前处理装置,可自动、在线、连续完成水中挥发性有机物萃取、富集、热解析,传输给气相色谱分离检测。实验分别对膜萃取材料、萃取温度、萃取时间、吹扫气流速等进行了系统优化,并用于氯仿、1,2-二氯甲烷、四氯化碳、三氯乙烯、甲苯、四氯乙烯、乙苯、氯苯、苯乙烯9种挥发性有机物的检测。研究结果表明,采用膜萃取/微捕集装置,与气相色谱联用,在萃取温度60℃,萃取时间30 min,吹扫气流速8 mL/min条件下,采用氢焰离子化检测器(Flame ionization detector,FID),对氯代烃的检出限达到0.003~0.041μg/L,精确度为2.7%~13.0%,线性相关系数均大于0.9936,适用于在线检测水中挥发性有机物。  相似文献   

9.
环境污染事故中挥发性有机物快速定量方法   总被引:4,自引:0,他引:4  
在相同的色谱条件下,分别以内标法和外标法对Restek Volatiles和J&W DB-624毛细管色谱柱建立了以苯、甲苯和乙苯为标准物质的相对响应因子(RRF)快速定量数据库。其它挥发性有机物可采用RRF平均值进行估算,相对误差在-85.9%~52.3%之间。运用建立的数据库,对实际大气样品进行测定,证明方法可行。  相似文献   

10.
采用热脱附与稳定同位素质谱联用技术分析了城市不同源及大气环境中挥发性有机物排放的单体同位素特征。系统考察了样品进样量、进样方式和样品分离度对同位素分馏影响情况。使用填有Tenax TA的吸附管采集汽油车尾气、汽油挥发、柴油车尾气、柴油挥发、溶剂挥发和餐饮油烟等污染源,以及城市不同功能区的挥发性有机物(VOCs)样品,不同污染源中挥发性有机物的稳定碳同位素δ13C值不同,97#汽油车尾气的δ13 C值偏重,平均值为-25.84‰,富集13 C;餐饮油烟的δ13 C值偏轻,平均值为-30.26‰。油品挥发比燃烧后以尾气的形式排放的苯系物δ13 C值重。厦门市各功能区挥发性有机物的δ13 C平均范围在-27.03‰~-25.40‰,接近于汽油和柴油挥发及尾气中的δ13 C值,表明厦门市空气中挥发性有机物以机动车排放源为主。  相似文献   

11.
用于测定空气中甲醛的电子鼻   总被引:14,自引:0,他引:14  
制作了可定量检测空气中甲醛的便携式电子鼻.该电子鼻由传感器阵列、信号调理电路、模式识别系统以及显示系统等4个部分组成,其中传感器阵列为4个半导体金属氧化物传感器.模式识别系统采用模糊神经网络算法.便携式甲醛电子鼻对甲醛气体响应专一,抗干扰能力强,且定量结果精确,可用于甲醛气体的现场检测.对于0.001~0.25mg/L浓度范围内的甲醛气体,电子鼻定量测报的正确率达到81.3%;对于干扰气体存在下的甲醛气体,未出现错误测报.  相似文献   

12.
Floral fragrance is one of the most important characteristics of ornamental plants and plays a pivotal role in plant lifespan such as pollinator attraction, pest repelling, and protection against abiotic and biotic stresses. However, the precise determination of floral fragrance is limited. In the present study, the floral volatile compounds of six Hedychium accessions exhibiting from faint to highly fragrant were comparatively analyzed via gas chromatography–mass spectrometry (GC–MS) and Electronic nose (E-nose). A total of 42 volatile compounds were identified through GC–MS analysis, including monoterpenoids (18 compounds), sesquiterpenoids (12), benzenoids/phenylpropanoids (8), fatty acid derivatives (2), and others (2). In Hedychium coronarium ‘ZS’, H. forrestii ‘Gaoling’, H. ‘Jin’, H. ‘Caixia’, and H. ‘Zhaoxia’, monoterpenoids were abundant, while sesquiterpenoids were found in large quantities in H. coccineum ‘KMH’. Hierarchical clustering analysis (HCA) divided the 42 volatile compounds into four different groups (I, II, III, IV), and Spearman correlation analysis showed these compounds to have different degrees of correlation. The E-nose was able to group the different accessions in the principal component analysis (PCA) corresponding to scent intensity. Furthermore, the pattern-recognition findings confirmed that the E-nose data validated the GC–MS results. The partial least squares (PLS) analysis between floral volatile compounds and sensors suggested that specific sensors were highly sensitive to terpenoids. In short, the E-nose is proficient in discriminating Hedychium accessions of different volatile profiles in both quantitative and qualitative aspects, offering an accurate and rapid reference technique for future applications.  相似文献   

13.
E-noses are innovative tools used for exhaled volatile organic compound (VOC) analysis, which have shown their potential in several diseases. Before obtaining a full validation of these instruments in clinical settings, a number of methodological issues still have to be established. We aimed to assess whether variations in breathing rhythm during wash-in with VOC-filtered air before exhaled air collection reflect changes in the exhaled VOC profile when analyzed by an e-nose (Cyranose 320). We enrolled 20 normal subjects and randomly collected their exhaled breath at three different breathing rhythms during wash-in: (a) normal rhythm (respiratory rate (RR) between 12 and 18/min), (b) fast rhythm (RR > 25/min) and (c) slow rhythm (RR < 10/min). Exhaled breath was collected by a previously validated method (Dragonieri et al., J. Bras. Pneumol. 2016) and analyzed by the e-nose. Using principal component analysis (PCA), no significant variations in the exhaled VOC profile were shown among the three breathing rhythms. Subsequent linear discriminant analysis (LDA) confirmed the above findings, with a cross-validated accuracy of 45% (p = ns). We concluded that the exhaled VOC profile, analyzed by an e-nose, is not influenced by variations in breathing rhythm during wash-in.  相似文献   

14.
Identification of the presence of pathogenic oomycetes in infected plant material proved possible using an electronic nose, giving hope for a tool to assist nurseries and quarantine services. Previously, species of Phytophthora plurivora and Pythium intermedium have been successfully distinguished in germinated acorns of English oak Quercus robur L. Chemical compound analyses performed by HS-SPME/GC-MS (Headspace Solid-Phase Microextraction/Gas Chromatography–Mass Spectrometry) revealed the presence of volatile antifungal molecules produced by oak seedlings belonging to terpenes and alkanes. Compounds characteristic only of Phytophthora plurivora or Pythium intermedium were also found. Methylcarveol occurred when germinated acorns were infected with Pythium, while neophytadiene (isomer 2 and 3) occurred only when infected with Phytophthora. Moreover, isopentanol was found in acorns infected with Phytophthora, while in control, isopentyl vinyl ether was not observed anywhere else. Among the numerous volatile compounds, isopentanol only occurred in acorns infected with Phytophthora and methylcarveol in acorns infected with Pythium.  相似文献   

15.
电子鼻具有操作简便、样品前处理简单、分析速度快、样品适用范围广等特点,已成为烟草行业快速检测方法的热门手段之一。该文对电子鼻的工作原理和基于不同传感器类型的电子鼻进行了介绍,对电子鼻在烟草行业中的应用进行了综述,并对电子鼻的发展趋势进行了展望。  相似文献   

16.
Compared to most other forest ecosystems, circumpolar boreal and subarctic forests have few tree species, and are prone to mass outbreaks of herbivorous insects. A short growing season with long days allows rapid plant growth, which will be stimulated by predicted warming of polar areas. Emissions of biogenic volatile organic compounds (BVOC) from soil and vegetation could be substantial on sunny and warm days and biotic stress may accelerate emission rates. In the atmosphere, BVOCs are involved in various gas-phase chemical reactions within and above forest canopies. Importantly, the oxidation of BVOCs leads to secondary organic aerosol (SOA) formation. SOA particles scatter and absorb solar radiation and grow to form cloud condensation nuclei (CCN) and participate in cloud formation. Through BVOC and moisture release and SOA formation and condensation processes, vegetation has the capacity to affect the abiotic environment at the ecosystem scale. Recent BVOC literature indicates that both temperature and herbivory have a major impact on BVOC emissions released by woody species. Boreal conifer forest is the largest terrestrial biome and could be one of the largest sources of biogenic mono- and sesquiterpene emissions due to the capacity of conifer trees to store terpene-rich resins in resin canals above and belowground. Elevated temperature promotes increased diffusion of BVOCs from resin stores. Moreover, insect damage can break resin canals in needles, bark, and xylem and cause distinctive bursts of BVOCs during outbreaks. In the subarctic, mountain birch forests have cyclic outbreaks of Geometrid moths. During outbreaks, trees are often completely defoliated leading to an absence of BVOC-emitting foliage. However, in the years following an outbreak there is extended shoot growth, a greater number of leaves, and greater density of glandular trichomes that store BVOCs. This can lead to a delayed chemical defense response resulting in the highest BVOC emission rates from subarctic forest in the 1–3 years after an insect outbreak. Climate change is expected to increase insect outbreaks at high latitudes due to warmer seasons and arrivals of invasive herbivore species. Increased BVOC emission will affect tropospheric ozone (O3) formation and O3 induced oxidation of BVOCs. Herbivore-induced BVOC emissions from deciduous and coniferous trees are also likely to increase the formation rate of SOA and further growth of the particles in the atmosphere. Field experiments measuring the BVOC emission rates, SOA formation rate and particle concentrations within and above the herbivore attacked forest stands are still urgently needed.  相似文献   

17.
The determination of different regions of tobacco leaves is vital in the tobacco industry. Different parts of tobacco leaves produce varying flavors due to the different chemical compositions. Here, near infrared spectroscopy and electronic nose were combined with support vector machine to predict the parts of tobacco leaves. Comparing to the single data model as near infrared spectroscopy with support vector machine or electronic nose with support vector machine, near infrared spectroscopy and electronic nose with support vector machine model show higher accuracy. The accuracy of near infrared spectroscopy and electronic nose with support vector machine model is 95.31%, while the accuracy of leave-one-out cross-validation is 79.69%. The optimal model was then applied to 60 unknown tobacco samples from different parts of tobacco leaves to test its accuracy, which is 81.67%.  相似文献   

18.
《Electroanalysis》2004,16(21):1801-1805
In this paper a novel approach for performing discriminative test in food quality control is reported. The method is based on the use of an electronic nose equipped with 10 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) sensors, 12 Metal Oxide Semiconductor (MOS) sensors and one humidity sensor. The pattern of the sensor responses generated by the electronic nose has been used for performing “objective” triangle tests in several food products. The results were compared with the data obtained by using standard methodology (triangle test) of sensory analysis (UNI ISO 4120 Norm). The e‐nose is able to classify correctly all the samples under study, while the sensory panel is able to correctly perform the test only in 50% of the cases. As compared with the sensory test, the electronic nose methodology is simple, rapid and results suggest that it can be useful tool for performing discriminative testing.  相似文献   

19.
静态顶空法是一种简单、环保的样品前处理方法.通过对比试验,优化了影响静态顶空进样方法灵敏度的主要因素,确定了较佳的样品盐度(40%)、平衡温度(80℃)、平衡时间(10 min)、平衡压力(0.103 4 MPa)、定量环平衡时间(20 s)、进样时间(3 min)等前处理方法参数.采用优化后水样前处理条件及1.00 k V的检测器电压,59种挥发性有机物在特定的线性范围内,标准曲线线性相关系数均大于0.998,方法检出限为丙烯腈4.4μg/L、硝基苯7.6μg/L,其余挥发性有机物(VOCs)介于0.06~1.4μg/L,饮用水源水及污水处理厂进水实际样品加标回收率为60%~110%,精密度(RSD)为0.33%~22%(n=6).建立的静态顶空-气相色谱/质谱法(HS-GC/MS)水样前处理过程自动化,可同时对水中59种挥发性有机物进行检测.  相似文献   

20.
The gas chromatography mass spectrometry (GCMS) with combination of Solid Phase Micro-extraction (SPME) was used to study the volatile organic compounds (VOCs) which emitted by the in-vitro cultured human cells and compared with documented volatile biomarker of lung cancer. For this purpose, the lung cancer cell (A549) and non-cancerous lung cell (WI38VA13) were cultured in identical growth medium, concurrently. The VOCs in the headspace of the cell cultures and the blank growth media (reference sample) were collected directly from the culture flask using SPME for 15minutes. The results show that two different volatile metabolites were screened out between A549 cells and Wi38VA13 cells. A549 cell found to emit 2 noticeable VOC which are decane and heneicosane. While for WI38VA13, the VOCs released were 1-Heptanol and heptadecane. The acquired VOCs were compared with the previous studies. The findings in this work conclude that the specific VOC of cells can be act as their odour signature and can be used to provide non-invasively screening of lung cancer using gas array sensor devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号