首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the momentum and thermal boundary layers over a semi-infinite flat plate has been studied when the external stream as well as the plate are impulsively moved with constant velocities. At the same time the temperature of the wall is suddenly raised from T, the temperature of the surrounding fluid, toT w and maintained at this temperature. The problem has been formulated in a new system of scaled coordinates such that fort?=0 it reduces to Rayleigh type of equation and fort? → ∞ it reduces to Blasius or Sakiadis type of equation. A new scale of time has been used which reduces the region of integration from an infinite region to a finite region which reduces the computational time considerably. The governing singular parabolic partial differential equations have been solved numerically using an implicit finite difference scheme. For some particular cases, analytical solutions have been obtained. The results show that there is a smooth transition from Rayleigh solution to Blasius or Sakiadis solution as the dimensionless timeξ increases from zero to one. The shear stress at the wall is negative for the friction parameterλ<0.5, positive forλ>0.5 and zero forλ=0.5. The zero shear stress at the wall does not imply separation but corresponds to the parallel flow. The surface heat transfer is strongly dependent on the Prandtl numberPr and increases with it. Also forPr<Pr 0, the surface heat transfer is enhanced as the friction parameterλ increases, but forPr>Pr 0 it get reduced.  相似文献   

2.
The present work is concerned with computational evaluation of a recently formulated near-wall relationship providing the value of the dissipation rate ε of the kinetic energy of turbulence k through its exact dependence on the Taylor microscale λ: ε = 10νk/λ 2, (Jakirli? and Jovanovi?, J. Fluid Mech. 656:530–539, 2010). Dissipation rate determination benefits from the asymptotic behavior of the Taylor microscale resulting in its linear variation in terms of the wall distance (λ?∝?y) being valid throughout entire viscous sublayer. Accordingly, it can be applied as a unified near-wall treatment in all computational frameworks relying on a RANS-based model of turbulence (including also hybrid LES/RANS schemes) independent of modeling level—both main modeling concepts eddy-viscosity and Reynolds stress models can be employed. Presently, the feasibility of the proposed formulation was demonstrated by applying a conventional near-wall second-moment closure model based on the homogeneous dissipation rate ε h ( ${\varepsilon_h =\varepsilon -0.5\partial \left( {{\nu \partial k}/ {\partial x_j }} \right)} / {\partial x_j }$ ; Jakirli? and Hanjali?, J. Fluid Mech. 539:139–166, 2002) and its instability-sensitive version, modeled in terms of the inverse turbulent time scale ω h (ω h ?=?ε h /k; Maduta and Jakirli?, 2011), to a fully-developed channel flow with both flat walls and periodic hill-shaped constrictions mounted on the bottom wall in a Reynolds number range. The latter configuration is subjected to boundary layer separation from a continuous curved wall. The influence of the near-wall resolution lowering with respect to the location of the wall-closest computational node, coarsened even up to the viscous sublayer edge situated at $y_P^+ \approx 5$ in equilibrium flows, is analyzed. The results obtained follow closely those pertinent to the conventional near-wall integration with the wall-next node positioned at $y_P^+ \le 0.5$ .  相似文献   

3.
Measurements of the spatial and time variation of two components of the velocity have been made over a sinusoidal solid wavy boundary with a height to length ratio of 2a/λ = 0.10 and with a dimensionless wave number of α+ = (2π/λ)(v/u ?) = 0.02. For these conditions, both intermittent and time-mean flow reversals are observed near the troughs of the waves. Statistical quantities that are determined are the mean streamwise and normal velocities, the root-meansquare of the fluctuations of the streamwise and normal velocities, and the Reynolds shear stresses. Turbulence production is calculated from these measurements. The flow is characterized by an outer flow and by an inner flow extending to a distance of about α?1 from the mean level of the surface. Turbulence production in the inner region is fundamentally different from flow over a flat surface in that it is mainly associated with a shear layer that separates from the back of the wave. Flow close to the surface is best described by an interaction between the shear layer and the wall, which produces a retarded zone and a boundary-layer with large wall shear stresses. Measurements of the outer flow compare favorably with measurements over a flat wall if velocities are made dimensionless by a friction velocity defined with a shear stress obtained by extrapolating measurements of the Reynolds stress to the mean levels of the surface (rather than from the drag on the wall).  相似文献   

4.
The effect of varying airfoil thickness and camber on plunging and combined pitching and plunging airfoil propulsion at Reynolds number Re=200, 2000, 20 000 and 2×106 was studied by numerical simulations for fully laminar and fully turbulent flow regimes. The thickness study was performed on 2-D NACA symmetric airfoils with 6-50% thick sections undergoing pure plunging motion at reduced frequency k=2 and amplitudes h=0.25 and 0.5, and for combined pitching and plunging motion at k=2, h=0.5, phase ?=90°, pitch angle θo=15° and 30° and the pitch axis was located at 1/3 of chord from leading edge. At Re=200 for motions where positive thrust is generated, thin airfoils outperform thick airfoils. At higher Re significant gains could be achieved both in thrust generation and propulsive efficiency by using a thicker airfoil section for plunging and combined motion with low pitch amplitude. The camber study was performed on 2-D NACA airfoils with varying camber locations undergoing pure plunging motion at k=2, h=0.5 and Re=20 000. Little variation in thrust performance was found with camber. The underlying physics behind the alteration in propulsive performance between low and high Reynolds numbers has been explored by comparing viscous Navier-Stokes and inviscid panel method results. The role of leading edge vortices was found to be key to the observed performance variation.  相似文献   

5.
The equilibrated grain boundary groove shapes for solid Zn solution (Zn-3.0 at.% Al-0.3 at.% Bi) in equilibrium with the Zn-Al-Bi eutectic liquid (Zn-12.7 at.% Al-1.6 at.% Bi) have been observed from quenched sample with a radial heat flow apparatus. Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy for solid Zn solution in equilibrium with Al-Bi-Zn eutectic liquid have been determined to be (5.1 ± 0.4) × 10−8 K m, (80.1 ± 9.6) × 10−3 and (158.6 ± 20.6) × 10−3 J m−2 from the observed grain boundary groove shapes, respectively. The thermal conductivity variation with temperature for solid Zn solution has been measure with radial heat flow apparatus and the value of thermal conductivity for solid Zn solution has been determined to be 135.68 W/km at the eutectic melting temperature. The thermal conductivity ratio of equilibrated eutectic liquid to solid Zn solution, R = KL(Zn)/KS(Zn) has also been measured to be 0.85 with Bridgman type solidification apparatus.  相似文献   

6.
We conducted an experimental study to understand the mechanisms and dominant parameters for 7.62 mm APM2 bullets that perforate 6082-T651 aluminum armor plates at oblique impacts. The 7.62-mm-diameter, 10.7 g, APM2 bullet consists of a brass jacket, lead filler, and a 5.25 g, ogive-nose, hard steel core. The brass and lead were stripped from the APM2 bullets by the targets, so we conducted ballistic experiments with both the APM2 bullets and only the hard steel cores. These projectiles were fired from a rifle to striking velocities between 400 and 1,000 m/s into 20-mm-thick plates at normal impact (β?=?0o) and at oblique angles of β?=?15o, 30o, and 45o. Measured residual and ballistic-limit velocities for the full bullet and the hard core were within a few percent for normal impact and all oblique angles. Thus, we showed that the perforation process was dominated by the hard steel core of the bullet. In addition, we conducted large strain, compression tests on the 6082-T651 plate material for input to perforation equations derived from a cavity-expansion model for the steel core projectiles. Model predictions were shown to be in good agreement with measured ballistic-limit and residual velocity measurements for β?=?0o, 15o, and 30o. We also presented a scaling law for the bullet that showed the ballistic-limit velocities were proportional to the square root of the product of plate thickness and a material strength term.  相似文献   

7.
The current work experimentally investigates the flow characteristics of an air jet impinging on an open rotor-stator system with a low non-dimensional spacing, G?=?0.02, and with a very low aspect ratio, e/D?=?0.25. The rotational Reynolds numbers varied from $0.33\times10^5$ to $5.32\times10^5$ , while the jet Reynolds numbers ranged from 17.2?×?103 to 43?×?103. Particle image velocimetry (PIV) measurements were taken along the entire disk diameter in three axial planes. From the obtained PIV velocity fields, the flow statistics were computed. A recirculation flow region, which was centered at the impingement point and possessed high turbulence intensities, was observed. Local peaks in root-mean-square fluctuating velocity distributions appeared in the recirculation region and near the periphery, respectively. Proper orthogonal decomposition analysis was applied to the cases of the jet impinging on the rotor with and without rotation to reveal the coherent structures in the jet region.  相似文献   

8.
The Darcy flow model with the Boussinesq approximation is used to investigate numerically the natural convection inside an inclined wavy cavity filled with a porous medium. Finite Element Method is used to discretize the governing differential equations with non-staggered variable arrangement. Results are presented for and , where ϕ, Ra, A and λ correspond to the cavity inclination angle, Rayleigh number, aspect ratio and surface waviness parameter, respectively. Stream and isotherm lines representing the corresponding flow and thermal fields, and local and average Nusselt numbers distribution expressing the rate of heat transfer are determined and shown on graphs and tables. A good agreement is observed between the present results and those known from the open literature. The flow and thermal structures found to be highly dependent on surface waviness for inclination angles less than 45°, especially for high Rayleigh numbers.  相似文献   

9.
One of the key factors for solving the problems of re-entry communication interruption is electromagnetic(EM) wave transmission characteristics in a plasma.Theoretical and experimental studies were carried out on specific transmission characteristics for different plasma sheath characteristic under thin sheath condition in re-entry state.The paper presents systematic studies on the variations of wave attenuation characteristics versus plasma sheath thickness L,collision frequency ν,electron density n e and wave working frequency f in a φ 800 mm high temperature shock tube.In experiments,L is set to 4 cm and 38 cm.ν is 2 GHz and 15 GHz.n e is from 1×10 10 cm(-3) to 1×10 13 cm(-3),and f is set to 2,5,10,14.6 GHz,respectively.Meanwhile,Wentzel-Kramers-Brillouin(WKB) and finite-difference time-domain(FDTD) methods are adopted to carry out theoretical simulation for comparison with experimental results.It is found that when L is much larger than EM wavelength λ(thick sheath) and ν is large,the theoretical result is in good agreement with experimental one,when sheath thickness L is much larger than λ,while ν is relatively small,two theoretical results are obviously different from the experimental ones.It means that the existing theoretical model can not fully describe the contribution of ν.Furthermore,when L and λ are of the same order of magnitude(thin sheath),the experimental result is much smaller than the theoretical values,which indicates that the current model can not properly describe the thin sheath effect on EM attenuation characteristics.  相似文献   

10.
The influence of the liquid properties on the dynamical bubble shape and on the bubble motion has been investigated for bubbles moving under a downward facing inclined surface. The Morton number Mo varied from 2.59 × 10−11 to 2.52 × 10+01. The Bond number Bo covered the range from 10 to 150 and the surface inclination angle θ was varied from 2° to 6°. To cover the wide range of Mo, several liquids such as glycerine, propanediol, water and isopropanol were used. The results have shown that the relation Fr = Fr(BoMoθ) is not adequate to describe the bubble motion, where Fr is the terminal Froude number. The choice of the terminal Reynolds number Re as the dependent parameter, allowed the clarification of the role of the Morton number on the bubble motion. At a given Bond number, the bubble Reynolds number decreases monotonously with the Morton number. Furthermore, an empirical correlation Re = Re(BoMoθ) is given that can be readily used in the mathematical modelling of bubble laden flows under solids.  相似文献   

11.
The creeping motion of a three-dimensional deformable drop or bubble in the vicinity of an inclined wall is investigated by dynamical simulations using a boundary-integral method. We examine the transient and steady velocities, shapes, and positions of a freely-suspended, non-wetting drop moving due to gravity as a function of the drop-to-medium viscosity ratio, λ, the wall inclination angle from horizontal, θ, and Bond number, B, the latter which gives the relative magnitude of the buoyancy to capillary forces. For fixed λ and θ, drops and bubbles show increasingly pronounced deformation in steady motion with increasing Bond number, and a continued elongation and the possible onset of breakup are observed for sufficiently large Bond numbers. Unexpectedly, viscous drops maintain smaller separations and deform more than bubbles in steady motion at fixed Bond number over a large range of inclination angles. The steady velocities of drops (made dimensionless by the settling velocity of an isolated spherical drop) increase with increasing Bond number for intermediate-to-large inclination angles (i.e. 45° ? θ ? 75°). However, the steady drop velocity is not always an increasing function of Bond number for viscous drops at smaller inclination angles.  相似文献   

12.
Using direct numerical simulation of turbulence in a periodic box driven by homogeneous forcing, with a maximum of 40963 grid points and Taylor micro-scale Reynolds numbers R λ up to 1131, it is shown that there is a transition in the forms of the significant, high vorticity, intermittent structures, from isolated vortices when R λ is less than 102 to complex thin-shear layers when R λ exceeds about 103. Both the distance between the layers and their widths are comparable with the integral length scale. The thickness of each of the layers is of the order of the Taylor micro-scale λ. Across the layers the velocity ‘jumps’ are of the order of the rms velocity u o of the whole flow. Within the significant layers, elongated vortical eddies are generated, with microscale thickness ? v ~10η???λ, with associated peak values of vorticity as large as 35ω rms and with velocity jumps as large as 3.4u o , where η is the Kolmogorov micro scale and ω rms the rms vorticity. The dominant vortical eddies in the layers, which are approximately parallel to the vorticity averaged over the layers, are separated by distances of order ? v . The close packing leads to high average energy dissipation inside the layer, as large as ten times the mean rate of energy dissipation over the whole flow. The interfaces of the layers act partly as a barrier to the fluctuations outside the layer. However, there is a net energy flux into the small scale eddies within the thin layers from the larger scale motions outside the layer.  相似文献   

13.
An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues λ1, λ2,, λrof the matrix satisfy |λ1| |λr| and |λs| |λs+1|(s r-1), then associated with any eigenvalue λi(i s), the errors of the eigenvalue and eigenvector derivatives obtained by the qth-order approximate method are proportional to |λi/λs+1|q+1, where the approximate method only uses the eigenpairs corresponding to λ1, λ2,, λs. A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.  相似文献   

14.
In this paper, the effects of a magnetic field on natural convection flow in filled long enclosures with Cu/water nanofluid have been analyzed by lattice Boltzmann method. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid, Ra = 103–105, the volumetric fraction of nanoparticles between 0 and 6 %, the aspect ratio of the enclosure between A = 0.5 and 2. The Hartmann number has been varied from Ha = 0 to 90 with interval 30 while the magnetic field is considered at inclination angles of θ = 0°, 30°, 60° and 90°. Results show that the heat transfer decreases by the increment of Hartmann number for various Rayleigh numbers and the aspect ratios. Heat transfer decreases with the growth of the aspect ratio but this growth causes the effect of the nanoparticles to increase. The magnetic field augments the effect of the nanoparticles at high Rayleigh numbers (Ra = 105). The effect of the nanoparticles rises for high Hartmann numbers when the aspect ratio increases. The rise in the magnetic field inclination improves heat transfer at aspect ratio of A = 0.5.  相似文献   

15.
Steady two-dimensional stagnation-point flow of an electrically conducting power-law fluid over a stretching surface is investigated when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. We have discussed the uniqueness of the solution except when the ratio of free stream velocity and stretching velocity is equal to 1. The effect of magnetic field on the flow characteristic is explored numerically and it is concluded that the velocity at a point decreases/increases with increase in the magnetic field when the free stream velocity is less/greater than the stretching velocity. It is further observed that for a given value of magnetic parameter M, the dimensionless shear stress coefficient |F(0)| increases with increase in power-law index n when the value of the ratio of free stream velocity and stretching velocity is close to 1 but not equal to 1. But when the value of this ratio further differs from 1, the variation of |F(0)| with n is non-monotonic.  相似文献   

16.
Terminal velocities and shapes of drops rising through vertical pipes in clean and fully-contaminated systems are measured by using a high-speed video camera and an image processing method. Silicon oils and glycerol water solutions are used for the dispersed and continuous phases, respectively. Triton X-100 is used for surfactant. Clean and contaminated drops take either spherical, spheroidal or deformed spheroidal shapes when the diameter ratio λ is less than a critical value, λC, whereas they take bullet shapes for λ > λC (Taylor drops). The applicability of available drag and Froude number correlations is examined through comparisons with the measured data. Effects of surfactant on the shape and terminal velocity of a Taylor drop are also discussed based on the experimental data and interface tracking simulations. The conclusions obtained are as follows: (1) drag and Froude number correlations proposed so far give reasonable estimations of the terminal velocities of clean drops at any λ, (2) the terminal velocities of contaminated drops are well evaluated by making the viscosity ratio μ* infinity in the drag correlation for clean drops in the viscous force dominant regime, (3) the effects of surfactant on the shape and terminal velocity of a Taylor drop become significant as the Eötvös number, EoD, decreases and μ* increases, and (4) the reduction in surface tension due to the addition of surfactant would be the cause of the increase in the terminal velocity and elongation of a contaminated Taylor drop.  相似文献   

17.
The transient elongation behavior of entangled polymer and wormlike micelles (WLM) solutions has been investigated using capillary breakup extensional rheometry (CaBER). The transient force ratio X = 0.713 reveals the existence of an intermediate Newtonian thinning region for polystyrene and WLM solutions prior to the viscoelastic thinning. The exponential decay of X(t) in the first period of thinning defines an elongational relaxation time λ x which is equal to elongational relaxation time λ e obtained from exponential diameter decay D(t) indicating that the initial stress decay is controlled by the same molecular relaxation process as the strain hardening observed in the terminal regime of filament thinning. Deviations in true and apparent elongational viscosity are discussed in terms of X(t). A minimum Trouton ratio is observed which decreases exponentially with increasing polymer concentration leveling off at Trmin = 3 for the solutions exhibiting intermediate Newtonian thinning and Trmin ≈ 10 otherwise. The relaxation time ratio λ e/ λ s, where λ s is the terminal shear relaxation time, decreases exponentially with increasing polymer concentration and the data for all investigated solutions collapse onto a master curve irrespective of polymer molecular weight or solvent viscosity when plotted versus the reduced concentration c[ η], with [ η] being the intrinsic viscosity. This confirms the strong effect of the nonlinear deformation in CaBER experiments on entangled polymer solutions as suggested earlier. On the other hand, λ eλ s is found for all WLM solutions clearly indicating that these nonlinear deformations do not affect the capillary thinning process of these living polymer systems.  相似文献   

18.
The turbulent film boiling from a vertical non-isothermal surface is formulated with due consideration to thermal radiation from its lateral face. It is observed that the application of Reynolds analogy together with thermal conduction in the test surface has yielded a conjugate solution from which the case of an isothermal condition can be generated as a special case. The analysis has further paved the way in establishing a functional relation between the Nusselt numberNu, radiation parameterN R , fin parameterM, temperature ratio termT s /(T w,0?T s ), and a product of characteristic modified Grashof, Prandtl and superheating parameter defined as (Gr 2 Pr S). In a fully developed turbulent film boiling i.e., modified Grashof number being greater than 1010, the temperature ratio term accounts for the non-linearities arising due to the inclusion of radiation from the lateral face of the fin. The results are in good agreement with experimental data over a wide range of system conditions.  相似文献   

19.
Spherical coordinates are r, θ, φ. The half-space extends in θ < π/2. The crack occurs along φ = 0. The region to be investigated is the solid space-triangle (or cone) between the three planes θ = π/2, φ = +0 and φ = 2π ? 0, which planes are to be taken stress-free.In this space-angle a state of stress is considered in terms of the cartesian stress components σxx = rλ?xx(λ, θ, φ); σxy = rλ(λ, θ, φ); etc. Possible values λ are determined from a characteristic (or eigenvalue) equation, expressing the condition that a determinant of infinite order is equal to zero. The root of λ which gives the most serious state of stress in the vertex region (the region r → 0) is the root closest to the limiting value Re λ > ?3/2. Knowledge of this state of stress, or at least of this value of λ is essential in the determination of the three-dimensional state of stress around a crack in a plate for distances of order of the plate thickenss.Along the front of the quarter-infinite crack (z-axis) the so called stress-intensity factor behaves like zλ+½ (z → 0) and thus tends to zero, respectively to infinity, accordingly to Re λ being >?½ or <?½. But in the region z → 0 the notion stress-intensity factor loses its meaning. The required state of stress passes into the well-known state of plane strain around a crack tip if Poisson's ratio (v) tends to zero. The computed state of stress for the incompressible medium (v = ½) is confirmed by experiment.  相似文献   

20.
This work addresses the conjugate heat transfer of a simplified PTT fluid flowing past an unbounded sphere in the Stokes regime (Re = 0.01). The problem is numerically solved with the finite-volume method assuming axisymmetry, absence of natural convection and constant physical properties. The sphere generates heat at a constant and uniform rate, and the analysis is conducted for a range of Deborah (0 ≤ De ≤ 100), Prandtl (100 ≤ Pr ≤ 105) and Brinkman (0 ≤ Br ≤ 100) numbers, in the presence or absence of thermal contact resistance at the solid–fluid interface and for different conductivity ratios (0.1 ≤ κ ≤ 10). The drag coefficient shows a monotonic decrease with De, whereas the normalized stresses on the sphere surface and in the wake first increase and then decrease with De. A negative wake was observed for the two solvent viscosity ratios tested (β = 0.1 and 0.5), being more intense for the more elastic fluid. In the absence of viscous dissipation, the average Nusselt number starts to decrease with De after an initial increase. Heat transfer enhancement relative to an equivalent Newtonian fluid was observed for the whole range of conditions tested. The dimensionless temperature of the sphere decreases and becomes more homogeneous when its thermal conductivity increases in relation to the conductivity of the fluid, although small changes are observed in the Nusselt number. The thermal contact resistance at the interface increases the average temperature of the sphere, without affecting significantly the shape of the temperature profiles inside the sphere. When viscous dissipation is considered, significant changes are observed in the heat transfer process as Br increases. Overall, a simplified PTT fluid can moderately enhance heat transfer compared to a Newtonian fluid, but increasing De does not necessarily improve heat exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号