首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
我们在研究 9-氧代桉烷 - 4-烯 - 3 -酮类化合物的 2 ,3 -二氯 - 5 ,6 -二腈基 - 1 ,4-苯醌 (DDQ)脱氢反应时[1] ,发现 1 4-降桉烷 - 4,1 1 -二烯 - 3 ,9-二酮及其 1 0 - Epimer在 DDQ脱氢条件下发生迁移重排反应 ,生成酚类化合物 .反应式如下 :DDQ脱氢反应已被详细研究 ,并被广泛地用于有机合成中 [2~ 5] ,但这种脱氢重排反应尚未见文献报道 .为了深入研究该反应 ,提出可能的重排机理 .我们参照文献 [6~ 1 0 ]方法 ,用 MVK和 EVK与相应的 2 -甲基 - 1 ,3 -二酮进行 Robinson成环反应 ,合成了一系列具有类似结构的化合物 ,并与 DD…  相似文献   

2.
设计了一种由 2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)和NaNO2组成的复合催化剂,该催化剂在9,10-二氢蒽氧化脱氢生成蒽的反应中表现出很高的催化活性和选择性. 在120 ℃和1.3 MPa O2下反应 8 h, 9,10-二氢蒽转化率达到99%以上,蒽的选择性为99%. 采用红外光谱和核磁共振方法对催化氧化脱氢的反应历程进行了研究. 结果表明, 9,10-二氢蒽氧气氧化脱氢生成蒽的反应是通过DDQ/DDQH2和NO2/NO两个氧化还原对的电子传递来推动的,以DDQ/NaNO2为催化剂可以有效催化9,10-二氢蒽氧化脱氢生成蒽.  相似文献   

3.
设计了一种由2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)和NaN02组成的复合催化剂,该催化剂在9,10-二氢葸氧化脱氢生成蒽的反应中表现出很高的催化活性和选择性.在120℃和1.3MPaO2下反应8h,9,10二氢蒽转化率达到99%以上,葸的选择性为99%.采用红外光谱和核磁共振方法对催化氧化脱氢的反应历程进行了研究.结果表明,9,10-二氢蒽氧气氧化脱氢生成蒽的反应是通过DDQ/DDQH2和NO2/NO两个氧化还原对的电子传递来推动的,以DDQ/NaNO2为催化剂可以有效催化9,10-二氢蒽氧化脱氢生成蒽.  相似文献   

4.
合成了 1 偶氮苯 3 (5 溴 2 吡啶 ) 三氮烯 (ABBPDT) ,研究了ABBPDT与锌 (Ⅱ )的显色反应。在pH =11.0的Na2 B4O7-NaOH缓冲溶液中 ,TritonTX - 10 0表面活性剂存在下 ,ABBPDT与锌 (Ⅱ )生成 4∶1的红色配合物。配合物的最大吸收峰位于 5 30nm ,表观摩尔吸光系数为 1.36× 10 5L/ (mol·cm)。锌 (Ⅱ )的浓度在 0~ 15 .0 μ犂/ (2 5mL)范围内符合比耳定律。用该方法测定人发中的微量锌 ,平均回收率 (n =6 )为 98.8%~ 99.5 % ,RSD为 1.6 %~ 1.9%。  相似文献   

5.
1-(2-吡啶偶氮)-2-萘酚-过氧化氢光度法测定土壤中痕量钒   总被引:1,自引:0,他引:1  
对钒(V)与1-(2-吡啶偶氮)-2-萘酚-过氧化氢-十六烷基三甲基溴化铵显色反应进行了试验,结果表明:在1 mol·L-1盐酸介质中,在十六烷基三甲基溴化铵存在下,钒(V)与1-(2-吡啶偶氮)-2-萘酚和过氧化氢反应生成红色多元络合物,络合物的最大吸收波长为577 nm,表观摩尔吸光率为3.04×104L·mol-1·cm-1,钒(V)的质量浓度在1.0 mg·L-1以内符合比耳定律.络合物的组成比为n钒(V):nPAN:n过氧化氢=1:1:1.方法用于土壤试样中痕量钒的测定,测定值的相对标准偏差(n=6)均小于9%,回收率在97.8%~101.5%之间,测得标准样品(GSS-5)中钒的含量为170.45μg·g-1,与标准值(166±9)μg·g-1之间的相对误差为2.7%.  相似文献   

6.
以碱性离子液体[bmim]OH为溶剂和催化剂, 由芳香醛与2-硫代-4-噻唑酮在沸水浴中反应30~75 min, 以89%~ 96%的产率制备了5-芳亚甲基-2-硫代-4-噻唑酮. 结果表明该方法简便易行, 产率较高, 所使用的离子液体对环境友好, 并可循环使用. 产物结构经1H NMR和IR确证.  相似文献   

7.
研究了10,10'-二烃基-9,9'-联二吖啶烯的DDQ的电荷转移光谱,用两种方法计算出了它们的电离热(Ip)值,并研究了该系列化合物与DDQ、TCNE和CA的氧化反应,其氧化结果和用HNO3氧化所得到的10,10'-烃基-9,9'-联二吖啶硝酸盐结果一致。在DDQ、TCNE和CA中,只有DDQ可以和该系列化合物形成CTC,其原因是DDQ有弱的氧化能力而有强的络合能力。  相似文献   

8.
合成了显色剂1-偶氮苯-3-(3-硝基-5-氯-2-吡啶)-三氮烯(ABNCPyT),并用元素分析法和红外光谱法对其分子结构作了鉴定.研究了ABNCPyT与汞的显色反应,在pH 10.5的Na2B4O7-NaOH缓冲溶液中和聚氧乙烯烷基酚(Triton X-100)表面活性剂存在下,试剂与汞(Ⅱ)生成4:1型红色配合物.配合物的最大吸收峰位于525 nm,表现摩尔吸光率为1.92×105L·mol-1·cm-1.汞(Ⅱ)质量浓度在600 靏稬-1以内符合比耳定律.用拟定方法测定废水中微量汞,所得结果与原子吸收光谱法的结果一致,测得其相对标准偏差(n=5)≤2.5%,方法的回收率在97.5%~103.0%.  相似文献   

9.
合成了新显色剂4-(4-氯苯重氮基)氨基-4′-氯偶氮苯(简称CDACAB),并研究了其与汞(Ⅱ)的显色反应。结果表明,在非离子表面活性剂OP存在下,在pH=10.5的Na2B4O7-NaOH缓冲介质中,汞(Ⅱ)与CDACAB形成1∶2橙红色络合物,其最大吸收波长位于498nm处,表观摩尔吸光系数ε=1.15×105 L.mol-1.cm-1。汞(Ⅱ)质量浓度在0~7.0μg/10mL范围内遵守比耳定律。所拟方法用于废水中微量汞(Ⅱ)的测定,相对标准偏差为1.6%~3.1%,回收率为96.5%~103.8%。  相似文献   

10.
1, 2-萘醌-4-磺酸钠分光光度法测定间苯二酚   总被引:3,自引:0,他引:3  
在pH 13.00缓冲溶液中, 间苯二酚能够催化氢氧根离子与1,2-萘醌-4-磺酸钠反应生成2-羟基-1, 4-萘醌, 其最大吸收波长为454 nm. 间苯二酚质量浓度在0.39~13.21 mg/L范围内与吸光度呈现良好线性关系. 线性回归方程为A=0.01918+0.05703c (×105 mol/L), 相关系数r=0.9981. RSD和检测限分别为1.6%, 0.34 mg/L (3σ/k). 该法能够直接用于水样中间苯二酚含量测定, 回收率在94.3%~106%.  相似文献   

11.
A new method has been achieved to form a Cu:benzoquinone derivative (DDQ) charge-transfer complex by the photoexcitation of [Cu(DDQ)2(CH 3COO)2] ( 1) that has been synthesized by the reaction of DDQ and hydrated cupric acetate in acetonitrile. Photoexcitation of coordinated complex 1 leads to the formation of charge-transfer complex Cu2+(DDQ(.-)2 ( 2). The charge transfer complex 2, when spun on solid substrates, forms nanowires. Sandwich structures of 2 exhibit electrical bistability associated with memory phenomenon. Read-only and random-access memory phenomena are evidenced in nanowires of 2 providing a route to attend the issues pertaining to the addressibility of organic memory devices.  相似文献   

12.
Two simple and accurate spectrophotometric methods are presented for the determination of anti-malarial drugs, chloroquine phosphate (CQP) and pyrimethamine (PYM), in pure and in different pharmaceutical preparations. The charge transphere (CT) reactions between CQP and PYM as electron donors and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) pi-acceptor and iodine sigma-acceptor reagents to give highly coloured complex species have been spectrophotometrically studied. The optimum experimental conditions have been studied carefully. Beer' law is obeyed over the concentration range of 1.0-15 microg ml(-1) for CQP and 1.0-40 microg ml(-1) for PYM using I(2) and at 5.0-53 microg ml(-1) for CQP and 1.0-46 microg ml(-1) for PYM using DDQ reagents, respectively. For more accurate results, Ringbom optimum concentration range is calculated and found to be 10-53 and 8-46 microg ml(-1) for CQP and PYM using DDQ, respectively and 5-15 and 8-40 microg ml(-1) for CQP and PYM using iodine, respectively. The Sandell sensitivity is found to be 0.038 and 0.046 g cm(-2) for DDQ method and 0.0078 and 0.056 g cm(-2) for I(2) method for CQP and PYM, respectively which indicates the high sensitivity of both methods. Standard deviation (S.D.=0.012-0.014 and 0.013-0.015) and relative standard deviation (R.S.D.=0.09-1.4 and 1.3-1.5%) (n=5) for DDQ and I(2) methods respectively, refer to the high accuracy and precision of the proposed methods. These results are also confirmed by between day precision of percent recovery of 99-100.6%, and 98-101% for CQP and PYM by DDQ method and 99-102% and 99.2-101.4% for CQP and PYM by I(2) method respectively. These data are comparable to those obtained by British and American pharmacopoeias assay for the determination of CQP and PYM in raw materials and in pharmaceutical preparations.  相似文献   

13.
Two simple and accurate spectrophotometric methods are presented for the determination of beta-lactam drugs, flucloxacillin (Fluclox) and dicloxacillin (Diclox), in pure and in different pharmaceutical preparations. The charge transfer (CT) reactions between Fluclox and Diclox as electron donors and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) pi-acceptor and potassium iodate via oxidation reduction reaction where the highly coloured complex species or the liberated iodine have been spectrophotometrically studied. The optimum experimental conditions have been studied carefully. Beer's law is obeyed over the concentration range of 2-450 microg ml(-1) for Fluclox and 10-450 microg ml(-1) for Diclox using DDQ reagent and at 50-550 microg ml(-1) for Fluclox and 50-560 microg ml(-1) for Diclox using iodate method, respectively. For more accurate results, Ringbom optimum concentration range is calculated and found to be 6-450 and 15-450 microg ml(-1) for Fluclox and Diclox using DDQ, respectively, and 65-550 and 63-560 microg ml(-1) for Fluclox and Diclox using iodine, respectively. The Sandell sensitivity is found to be 0.018 and 0.011 microg cm(-2) for DDQ method and 0.013 and 0.011 microg cm(-2) for iodate method for Fluclox and Diclox, respectively, which indicates the high sensitivity of both methods. Standard deviation (S.D.=0.01-0.80 and 0.07-0.98) and relative standard deviation (R.S.D.=0.13-0.44 and 0.11-0.82%) (n=5) for DDQ and iodate methods, respectively, refer to the high accuracy and precision of the proposed methods. These results are also confirmed by between-day precision of percent recovery of 99.87-100.2 and 99.90-100% for Fluclox and Diclox by DDQ method and 99.88-100.1 and 99.30-100.2% for Fluclox and Diclox by iodate method, respectively. These data are comparable to those obtained by British and American pharmacopoeias assay for the determination of Fluclox and Diclox in raw materials and in pharmaceutical preparations.  相似文献   

14.
ARMA&#  AN Ö  nal 《中国化学》2009,27(4):781-786
Three simple, quick and sensitive methods are described for the spectrophotometric determination of pregabalin (Pgb) in pharmaceutical preparations. Among them, the first two methods are based on the reaction of Pgb as n-electron donors with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as π-acceptors to give highly colored complex species. The colored products were quantitated spectrophotometrically at 494 and 841 nm for DDQ and TCNQ, respectively. Optimization of the different experimental conditions was conducted. Beer’s law was obeyed in the concentration ranges 2.0—30.0 and 1.5—10 µg•mL-1 for DDQ and TCNQ methods, respectively. The third method is based on the interaction of ninhydrin (NN) with primary amine present in the pregabaline. This reaction produces a blue coloured product in N,N-dimethylformamide (DMF) medium, which absorbs maximally at 573 nm. Beer’s law was found in the concentration range 40.0—180.0 μg•mL-1. The methods were applied successfully to the determination of this drug in pharmaceutical dosage forms.  相似文献   

15.
Simple, rapid, accurate, and sensitive spectrophotometric methods are described for the determination of dicyclomine hydrochloride. The methods are based on the reaction of this drug as an n-electron donor with 2,3-dichloro-5,6-dicyano-p-benzoqunione (DDQ), p-chloranilic acid (p-CA), and chloranil (CL) as pi-acceptors to give highly colored complex species. The colored products are measured spectrophotometrically at 456, 530, and 650 nm for DDQ, p-CA, and CL, respectively. Optimization of the different experimental conditions were studied. Beer's law was obeyed in concentration ranges of 20-100, 50-250, and 80-600 microg/mL for DDQ, pCA, and CL, respectively. Colored complexes are produced in organic solvents and are stable for at least 1 h. The methods were applied to Spasmorest antispasmotic tablets and ampoules with good accuracy and precision.  相似文献   

16.
Four simple, quick and sensitive methods are described for the spectrophotometric determination of gatifloxacin. The methods are based on the reaction of gatifloxacin as n-electron donor with 7,7,8,8-tetracyanoquinodimethane (TCNQ); 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ); chloranilic acid (CLA) and p-chloranil (CL) as pi-acceptors to give highly colored complex species. The colored products are quantitated spectrophotometrically at 460, 841, 530 and 545 nm for DDQ, TCNQ, CLA and CL, respectively. Optimization of the different experimental conditions is described. Beer's law is obeyed in the concentration ranges 5-60, 1.5-18, 30-360 and 20-240 microg ml(-1) of gatifloxacin, but for more accurate analysis, Ringbom optimum concentration range was found to be 7.5-55, 3-16, 35-350 and 25-230 microg ml(-1) of gatifloxacin for DDQ, TCNQ, CLA and CL, respectively. The limits of detection and quantification were calculated and the relative standard deviations for different concentrations of gatifloxacin using various acceptors were <1.28%. The association constants of 1 : 1 complexes and standard free energy changes using Benesi-Hildebrand plots were studied. The proposed methods were successfully applied to the determination of gatifloxacin in pharmaceutical dosage forms without interference from common additives encountered.  相似文献   

17.
A simple micellar electrokinetic chromatography (MEKC) with UV detection is described for simultaneous analysis of cefepime and L-arginine. The determination of cefepime and L-arginine in pharmaceutical preparations was performed at 25degreesC using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Several parameters affecting the separation of the drugs were studied, including the pH and concentrations of the Tris buffer and SDS. Under optimal MEKC conditions, good separation with high efficiency and short analysis times is achieved. Using cefazolin as an internal standard, the linear ranges of the method for the determination of cefepime and L-arginine were over 5-100 microg/mL; the detection limits of cefepime (signal to noise ratio = 3; injection 3.45 kPa, 3 s) and L-arginine (signal to noise ratio = 3; injection 3.45 kPa, 3 s) were 2 microg/mL and 4 microg/ mL, respectively. Applicability of the proposed method for the determination of cefepime and L-arginine in commercial injections was demonstrated.  相似文献   

18.
Two simple and accurate spectrophotometric methods for determination of Rifampicin (RIF) are described. The first method is based on charge transfer (CT) complex formation of the drug with three pi-electron acceptors either 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 7,7,7,8-Tetracyanoquinodimethane (TCNQ) or 2,3,5,6-Tetrachloro-1,4-benzoquinone (p-chloranil) in acetonitrile. The method is followed spectrophotometrically by measuring the maximum absorbance at 584 nm, 761 nm (680 nm) or 560 nm for DDQ, TCNQ and p-chloranil, respectively. Under the optimized experimental conditions, the calibration curves showed a linear relationship over the concentration ranges of 5-140 microg/ml, 2-45 microg/ml (5-120 microg/ml) and 15-200 microg/ml, respectively. The second method is based on the reaction of RIF with iron(III) forming a water insoluble violet complex which is extracted into chloroform. The method determines RIF in concentration range of 10-240 microg/ml at 540 nm. The proposed methods applied to determination of RIF in capsule, human serum and urine samples with good accuracy and precision. The results were compared statistically with the official method and showed no significant different between the methods compared in terms of accuracy and precision.  相似文献   

19.
Simple, rapid and reliable method for the determination of albendazole (ABZ) was described. This includes the utility of some Π‐acceptors such as 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) and 3,6‐dichloro‐2,5‐dihy‐ droxy‐p‐benzoquinone (p‐CLA) for estimation of ABZ drug (act as donor). The experimental conditions were optimized and the system obeys Beer's law for 7.50–80 and 10.00–85.00 µg·mL?1 of ABZ using DDQ and p‐CLA, respectively. The molar absorptivity and Sandell sensitivity were calculated to be 1.83×103 and 1.12×103 L·mol?1·cm?1, and 2.60 and 3.40 ng·cm?2 using DDQ and p‐CLA, respectively. The limits of detection and quantification were calculated to be (7.42 and 6.73) and (9.94 and 4.13) µg·mL?1 using DDQ and p‐CLA, respectively. The proposed methods were successfully applied to the determination of ABZ in commercially available dosage forms. The reliability of the assays was established by parallel determination by the official method and recovery studies. The chemical structures of the solid charge‐transfer (CT) complexes formed via reaction between ABZ under study and Π‐acceptors, have been elucidated using elemental analyses (C, H and N), IR, 1H NMR and mass spectra.  相似文献   

20.
The effect of solvent on the dehydrogenation of poly(1,3‐cyclohexadiene) (PCHD) with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) [or 2,3,5,6‐tetrachloro‐1,4‐(p‐)‐benzoquinone (TCQ)] was examined to improve the reactivity of benzoquinones for this dehydrogenation reaction. The dehydrogenation of PCHD with DDQ (or TCQ) was strongly affected by the type of solvent, and aromatic hydrocarbon based solvents were appropriate for this dehydrogenation reaction. A charge‐transfer complex between DDQ (or TCQ) and aromatic hydrocarbons was formed in the reaction mixture, and the reactivity of the complex was much higher than that of free DDQ (or TCQ). The formation of a DDQ–aromatic hydrocarbon complex, which has a large diamagnetic shift of the 13C NMR signals with respect to DDQ, was the primary factor for improvement of the reactivity of DDQ. For the TCQ–aromatic hydrocarbon complex, the existence of an electron‐withdrawing group on the aromatic hydrocarbon was the major factor for improvement of the reactivity of TCQ. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 342–350, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号