首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Baragetti 《Meccanica》2006,41(4):443-458
The nonlinear bending of thin wires is a challenging topic in several applications where the final geometry of the wire after bending and springback has to be known. Typical examples are tyre manufacturing, helical spring design, spectacles frames. In order to develop analytical models able to set bending parameters for a required final shape of the wire, both account material behaviour (during the loading and unloading phases with springback effect) and geometrical nonlinearity have to be considered. In the case of plates bending, many analytical and numerical models are available in the literature, offering an accurate solution to this problem. However, the bending of thin wires could still be the subject of discussion and research. In this paper a new analytical model was developed, starting from the models available in the literature, in order to provide the designer with a simple model to predict the final shape of a wire by using mathematical codes. The model allows to predict with a higher level of accuracy the final shape of wires having different cross-sections after nonlinear bending. Since Bernoulli’s hypothesis is assumed, the model can be used in all the applications where the material behaviour of the wire guarantees that plane cross sections of the wire will remain plane after rotation due to bending, with negligible errors from the engineering point of view.  相似文献   

2.
Jiang  Min  Rui  Xiaoting  Yang  Fufeng  Zhu  Wei  Zhu  Hongtao  Han  Wenjiao 《Nonlinear dynamics》2023,111(9):8191-8215

Aiming at the problem that the damping coefficient of the traditional hydro-pneumatic spring cannot be adjusted in real-time, the magnetorheological (MR) damping technology was introduced into the traditional hydro-pneumatic spring with single gas chamber. A new shear-valve mode MR hydro-pneumatic spring was proposed. And its dynamic performance was analyzed based on multi-physical coupling simulation and mechanical property test. Firstly, a structural scheme of MR hydro-pneumatic suspension was proposed to ensure the original height adjustment function based on the working principle of traditional hydro-pneumatic suspension with single gas chamber. Secondly, based on the design requirements, the parameter of MR hydro-pneumatic spring damping structure was designed by using MR damper design method. Thirdly, the multi-physical coupling dynamic performance of the MR hydro-pneumatic spring damping structure was analyzed based on the electromagnetic field analysis theory, flow field analysis theory and thermal field analysis theory. The analysis results showed that the designed MR hydro-pneumatic spring has reasonable magnetic circuit structure and excellent working performance. Then, the mechanical properties of MR hydro-pneumatic spring were tested. The results showed that the maximum damping force can reach 20 kN, and the dynamic adjustable multiple can reach 6.4 times. It has good controllability and meets the design requirements. Finally, a nonlinear model of MR hydro-pneumatic spring was established based on the elastic force calculation model of the gas and the Bouc–Wen model. The simulation results of the established model agree well with the experimental results, which can accurately describe the dynamic properties of the hydro-pneumatic spring. The proposed design and modeling method of the MR hydro-pneumatic spring can provide a theoretical basis for the related vibration damping devices.

  相似文献   

3.
李想  严子铭  柳占立  庄茁 《力学进展》2021,51(1):82-105
先进结构材料近年来受到材料和结构设计领域的广泛关注,这些材料一般通过多个尺度的结构设计实现各种卓越的性能.在早期的材料设计中,有的基于设计者的丰富经验,从天然拓扑结构中抽象出合理的数学力学模型;有的基于生物系统的结构和功能特点提取出仿生力学模型.然而,仅依靠经验性的巧妙设计很难得到最优的设计方案,通过反复迭代设计和试验...  相似文献   

4.
The article presents the preliminary studies for the prototyping of a spherical parallel robot for miniaturized assembly applications. The closed-form solution of robot’s kinematics allowed to optimize its (rotation) workspace by taking into account all singularity surfaces and the maximum strokes of the linear actuators. Then, in view of flexures design, the maximum rotations of the passive joints have been calculated and finally the design of the legs and of the whole robot has been carried out by means of a FEM software, with due regard to the non-linearities arising from large displacements.  相似文献   

5.
Arsie  Ivan  Gambino  Michele  Pianese  Cesare  Rizzo  Gianfranco 《Meccanica》1997,32(5):397-408
The development of mathematical models for the design of controlstrategies for spark ignition automotive engines is described. The objectiveof the models, used for both simulation and optimization analysis, is theprediction of the effects of control strategies on fuel consumption andemissions of a vehicle over arbitrary driving cycles. In order to achievethe best compromise between precision, experimental costs, computationaltime and flexibility, a mixed modelling approach is used, withphenomenological and input-output models integrated within a hierarchicalsystem.Mean value models have been used to describe the most significant dynamiceffects: (i) air flow. (ii) two phases fuel flow in the intake manifold, and(iii) thermal flow in the cylinder walls. Stochastic effects due to sensorsand actuators can be also predicted.Two-zone and multizone thermodynamic models for the prediction ofpressure cycle sub-models for engine emissions (HC, CO, andNO x and mechanical losses have been developed. Experimentaldesign techniques are also under development to optimize the interactionsbetween experimental analysis and models. Most of the models have beenintegrated in a computer code, used by a major automotive supplier.  相似文献   

6.
新型复合材料点阵结构的研究进展   总被引:2,自引:0,他引:2  
复合材料点阵结构是一种具有轻质、高比强、高比刚以及多功能潜力的新型结构材料, 近几年受到国外学者的极大关注, 是新一代结构材料一体化的理想结构材料. 本文概述了点阵复合材料及结构的发展历程, 包括复合材料点阵结构的拓扑构型设计、制备工艺研究、力学性能表征、失效模式分析、预报模型评价等方面的工作, 并给出了复合材料点阵结构的力学性能、失效模式和理论数值模型汇总表以及修正后的材料强度与密度关系图. 同时, 本文对复合材料点阵结构可能应用的领域进行预测, 并对其未来发展进行了展望.   相似文献   

7.
Helical springs are indispensable elements in mechanical engineering. This paper investigates helical springs subjected to axial loads under different dynamic conditions. The mechanical system, composed of a helical spring and two blocks, is considered and analyzed. Multibody system dynamics theory is applied to model the system, where the spring is modeled by Euler–Bernoulli curved beam elements based on an absolute nodal coordinate formulation. Compared with previous studies, contact between the coils of spring is considered here. A three-dimensional beam-to-beam contact model is presented to describe the interaction between the spring coils. Numerical analysis provides details such as spring stiffness, static and dynamic stress for helical spring under compression. All these results are available in design of helical springs.  相似文献   

8.
In an effort to construct a design tool for a mechanical spring featuring highly nonlinear spring stiffness, compression of truncated elastomeric cones has been studied using nonlinear finite element analyses involving neo-Hookean material law and contact elements. Series of finite element models of various geometric aspect ratios of truncated cones were calculated to form a fundamental database of the design tool. It was found that the compressive stiffness of the rubber cone can be non-dimensionalized with respect to the elastic modulus and a characteristic length of the cone. While the stiffness of the truncated rubber cone appears more linear between 0 and 5% of the compression ratio, the stiffness increases exponentially with progressing compression at higher compression ratios. Regression equations of the non-dimensional axial force and spring stiffness were obtained with reasonable accuracy, compared with the original finite element data.  相似文献   

9.
Uniform distribution of flow in tube bundle of shell and tube heat exchangers is an arbitrary assumption in conventional heat exchanger design. Nevertheless, in practice, flow maldistribution may be an inevitable occurrence which may have severe impacts on thermal and mechanical performance of heat exchangers i.e. fouling. The present models for flow maldistribution in the tube-side deal only with the maximum possible velocity deviation. Other flow maldistribution models propose and recommend the use of a probability distribution, e.g. Gaussian distribution. None of these, nevertheless, estimate quantitatively the number of tubes that suffer from flow maldistribution. This study presents a mathematical model for predicting gross flow maldistribution in the tube-side of a single-pass shell and tube heat exchanger. It can quantitatively estimate the magnitude of flow maldistribution and the number of tubes which have been affected. The validation of the resultant model has been confirmed when compared with similar study using computational fluid dynamics (CFD).  相似文献   

10.
In this investigation, the magnitude and position of the maximum stresses, as well as the stress distributions at critical sections of internally loaded conduits, were determined by experimental photoelasticity. The conduits tested had circular internal boundaries and square, octagonal and sixteen-sided polygon external boundaries. The photoelastic material used to make the models was Catalin 61-893. Curves of stress distribution have been plotted for the various shapes and sections, making rapid and economical design of the shapes possible. A technique for applying known internal pressures to conduit photoelastic models was developed in order to carry out the investigation. This involved a fixture embodying a rubber pressure disk and a helical spring.  相似文献   

11.
反平面剪切作用下双材料滑动界面的细观力学模型   总被引:1,自引:0,他引:1  
陈怀智  仲政  王旭 《力学季刊》2003,24(2):227-230
非理想粘结界面对多相材料力学性能具有重要影响。对于双材料间含众多随机分布微裂纹的界面,宏观上可以等效为连续损伤的弱界面,其两侧的面力连续而位移有间断。只有切线方向的位移间断,而法线方向位移连续的弱界面称之为滑动界面。在反平面剪切的作用下,我们证明了对于含有随机分布微裂纹的弹性双材料界面在宏观上等效为线弹簧型滑动界面,并获得了滑动界面柔度的一般表达式。利用Mori—Tanaka方法和广义自洽方法,我们研究了滑动界面柔度系数和微裂纹密度的关系。对这两种方法所得的结果进行比较发现,Mori—Tanaka方法得到的界面柔度比广义自洽方法得到的界面柔度大。当裂纹密度比较小时,这两种方法求得的界面柔度很接近。两种方法的结果都表明,界面柔度随裂纹密度的增加而增加。Mori—Tanaka方法比广义自治方法求解更为简便。  相似文献   

12.
A variety of methods exist to measure the stiffness of microfabricated cantilever beams such as those used as mechanical sensors in atomic force microscopy (AFM). In order for AFM to be used as a quantitative small force measurement tool, these methods must be validated within the International System of Units (SI). To this end, two different contact techniques were used to calibrate the spring constant of a cantilever beam. First, a dynamic indentation-based method was used to measure the spring constant of a rectangular cantilever beam. These results were then compared against an SI-traceable spring constant measurement from an electrostatic force balance (EFB). The measurements agree within experimental uncertainty and within 2% for spring constants greater than 2 N/m. The use of this cantilever beam as a transfer artifact for in situ AFM cantilever calibration was then evaluated in comparison to the thermal calibration method. Excellent agreement is seen between these techniques, establishing the consistency of the thermal and dynamic indentation methods with SI-traceable contact cantilever calibration for the rectangular cantilever geometry tested. Disclaimer: This article is authored by employees of the U.S. federal government, and is not subject to copyright. Commercial equipment and materials are identified in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.  相似文献   

13.
Dynamics of a multi-DOF beam system with discontinuous support   总被引:2,自引:0,他引:2  
This paper deals with the long term behaviour of periodically excited mechanical systems consisting of linear components and local nonlinearities. The particular system investigated is a 2D pinned-pinned beam, which halfway its length is supported by a one-sided spring and excited by a periodic transversal force. The linear part of this system is modelled by means of the finite element method and subse1uently reduced using a Component Mode Synthesis method. Periodic solutions are computed by solving a two-point boundary value problem using finite differences or, alternatively, by using the shooting method. Branches of periodic solutions are followed at a changing design variable by applying a path following technique. Floquet multipliers are calculated to determine the local stability of these solutions and to identify local bifurcation points. Also stable and unstable manifolds are calculated. The long term behaviour is also investigated by means of standard numerical time integration, in particular for determining chaotic motions. In addition, the Cell Mapping technique is applied to identify periodic and chaotic solutions and their basins of attraction. An extension of the existing cell mapping methods enables to investigate systems with many degress of freedom. By means of the above methods very rich complex dynamic behaviour is demonstrated for the beam system with one-sided spring support. This behaviour is confirmed by experimental results.  相似文献   

14.
Hierarchical modeling in multibody dynamics   总被引:1,自引:0,他引:1  
Summary In this paper a hierarchical approach using several mechanical models with different complexities and modeling depths to describe a single engineering system is presented. The mechanical models are derived from (but not limited to) multibody dynamics. The computer power available and improvements in theoretical understanding allow today not only to perform analyses but also to attack the problem of multimodel synthesis. Therefore, hierarchical modeling is used as a basis to analyze simultaneously models with different complexities and different excitations, and to optimize the performance with the most appropriate model for an investigated mechanical effect. Since only one single engineering system is investigated, its different models must be coupled by shared parameters, and the different criteria have to be combined with multicriteria optimization algorithms in order to obtain a single feasible design. An example taken from vehicle dynamics demonstrates the application of the approach. Received 14 January 1997; accepted for publication 11 September 1997  相似文献   

15.
The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE–POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum–coarse-grained model for the study of RBCs in fluid flows.  相似文献   

16.
双马来酰亚胺树脂是高性能碳纤维复合材料的新型基体材料,在航空航天等领域具有广泛的应用。目前,相关材料的改性技术、制备工艺以及材料性能等考察仍以实验为主,数值模型及相应的分析方法则相对较少。本文构建了4,4′—二苯甲烷双马来酰亚胺(BDM)和二烯丙基双酚A(DABPA,固化剂)的分子尺度数值模型,实现了与实验过程基本一致的交联反应过程,考察了BDM/DABPA树脂材料的力学性质以及由碳纳米管填充所引起的强化规律和机理。结果表明,树脂材料的力学性质随着交联程度的提高而增加,而短碳纳米管的掺杂也可以进一步增强力学性质。研究工作为基于双马树脂的复合材料设计构建了数值分析技术,为相关材料的性能改进从微观层次提供了有价值的参考。  相似文献   

17.
蜂窝夹层结构在轻量化设计领域一直备受关注,相关的理论研究也日趋完善.然而,很多研究主要集中在平面蜂窝夹层结构上,而对于曲面结构的相关研究甚少.本文对双曲面蜂窝夹芯进行了力学分析,建立了曲面蜂窝夹层板的等效力学模型,同时建立了双曲面蜂窝夹层板详细模型和基于三明治夹层板理论以及曲面夹层板理论的等效模型,最后通过有限元方法对...  相似文献   

18.
The successful design and fabrication of structures and systems at the small scale require robust methods for characterizing the mechanical behavior of materials at the same scale. In this paper we describe the design of two flexure-based micromechanical testers capable of measuring forces with an accuracy of 25 μN over a range of 1–30 N, and specimen extensions with an accuracy of 20 nm over a range of 1–5 mm. These force and displacement resolutions and ranges are required in a wide variety of material characterization applications, such as microtensile testing of micrometer-dimensioned films, foils and wires, bending of millimeter-sized beams, as well as micro-indentation. The novel feature of our machines is that they are based on the use of two compound flexures in an integrated monolithic frame: one flexure functioning as a precision guide for actuation, and the other fexure as a linear spring for force measurement. Two machines, one with a maximum load capacity of 1.5 N and the other of 30 N, have been constructed based on this concept. Details of their design, construction, and typical test results are presented in this paper.  相似文献   

19.
本文根据力学概念和库仑摩擦定律,建立了空间结构支座摩擦力问题的精确数学模型并提出了两种解法,即数学规划法和弹簧约束法;同时指出了考虑支座摩擦力作用的结构分析方法。算例表明本文的方法是很有效的。本文的研究成果已应用于实际工程的结构优化设计。  相似文献   

20.
多胞材料可通过大变形大量地吸收冲击能量,引入密度梯度可进一步提高其耐撞性。梯度多胞材料的宏观力学响应对材料密度分布极为敏感,不同类型的细观构型的影响也极为不同。已有的研究工作主要局限在对给定的密度梯度分析其动态响应,较少对耐撞性设计方法进行研究。本文针对梯度闭孔泡沫金属材料,基于非线性塑性冲击波模型发展了耐撞性反向设计方法,以维持冲击物受载恒定为目标,运用级数法获得了简化模型和渐近解。利用变胞元尺寸法构建了连续梯度变化的三维Voronoi细观有限元模型,并利用ABAQUS/Explicit有限元软件对理论设计进行数值验证。结果表明,反向设计理论简化模型的渐近解对于梯度闭孔泡沫金属材料的耐撞性设计是有效的,所提出的耐撞性设计方法在控制冲击吸能过程和冲击物受载方面具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号