首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the spectroscopic properties of femtosecond laser-irradiated sodium-alumino-borate glass doped with silver and gold ions. We precipitated gold and silver nanoparticles by laser irradiation and annealing at 400°C for 30 min. The irradiation and annealing treatment produced different absorption and emission characteristics in Au3+ doped and Au3+, Ag+ codoped glasses, and the possible mechanisms of the observed results are discussed. The size of the nanoparticles was estimated by TEM and absorption band analysis.  相似文献   

2.
We report the formation of fluorescence patterns inside gold-doped glass medium by femtosecond-laser fabrication. Strong fluorescence images appeared from the irradiated multi-layered region after low temperature annealing. We removed the images by exposing the glass to an electric furnace or a CO2 laser beam for high temperature annealing. The method was also applied to recording, reading, and erasing of fluorescence data by a femtosecond laser, a 405-nm laser diode, and a CO2 laser respectively.  相似文献   

3.
Eu2+ and Mn2+ co-activated Sr5(PO4)3Cl phosphors with blue and orange color double emission bands, under a broad-band excitation wavelength range of 340–400 nm, were synthesized by the solid-state reaction. It was found that the processing parameters, including the fluxes, annealing time and activators concentrations, affect the emission intensity and other luminescent properties. Energy transfer between Eu2+ and Mn2+ was discovered and the transfer efficiency was also estimated based on relative intensities of Eu2+ and Mn2+ emission. Thus the relative strength of blue and orange emission intensities could be tuned by varying the relative concentration of Eu2+ and Mn2+. Since the photoluminescence excitation spectra of the newly developed Sr5(PO4)3Cl:Eu2+, Mn2+ phosphors exhibit a strong absorption in the range of 340–400 nm, they are promising for producing UV-LED-based white LEDs.  相似文献   

4.
Mixing metallic Al into the starting material for silicate glass is proposed as a means of forming Si structures in glass. We confirmed that Si nanocrystals are space-selectively deposited in silicate glass via a thermite reaction triggered by femtosecond laser pulses. Small Si particles were transformed into larger, but still micrometer sized, Si particles by laser irradiation. These structures grew to micro-size particles due to the thermite reaction promoted by heat treatment. We discuss what effect the irradiation of the focused laser pulse had on the Si deposition process in the laser-irradiated region. Localized high temperatures and pressures and generation of shock waves appear to be very important in forming Si-rich structures that contribute to the growth of Si particles. The diffusion of calcium ions by the generation of shock waves and the presence of Al-rich structures is important for forming Si-rich structures such as Si clusters, which is achieved by continuously breaking Si–O bonds using localized high temperatures.  相似文献   

5.
Methoxy Ge Triphenylcorrole [Ge(TPC)OCH3] has been recently synthesized and deposited as thin film by the Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. In the last few years, corroles have been the object of an increasing number of studies and MAPLE technique seems to be a very promising deposition method for organic and polymeric films, producing good results for applications in chemical gas sensing layers production. In this work Ge(TPC)OCH3 thin films were deposited by both spin coating and MAPLE techniques for comparison. The morphology of the films was investigated by Atomic Force Microscopy (AFM), while their optical properties were analyzed by photoluminescence (PL) and UV-vis absorption measurements and were compared with the ones of the starting solution. The film absorption spectrum presented the same peaks with the same relative intensities of that recorded in solution. The luminescence spectra were acquired periodically to evaluate the aging effects and no detectable variations were recorded over a period of 1 month.  相似文献   

6.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

7.
A series of double molybdates phosphors AEu(MoO4)2 (A = Li, Na, K and Ag) have been prepared by sol-gel method. Their crystal structure and luminescent properties have also been investigated in a comparable way. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA). Field emission scanning electron microscopy (FE-SEM) was also used to characterize the shape and size distribution of the phosphors. Samples except KEu(MoO4)2 showed tetragonal scheelite structure in the range of our experiments, and no phase transition appeared. Phosphor KEu(MoO4)2 possessed two structures, and the phase transition took place at about 800°C. All samples with high purity could be obtained at about 500°C for 5 hours, and they all showed intense red light peaked at 616 nm originated from 5D07F2 emission of Eu3+ under the excitation of 465 nm or 394 nm light. The excitation spectra of phosphors AEu(MoO4)2 (A = Li, Na, and K) are composed of a strong broad charge transfer (CT) band and some sharp lines, and the relative intensity of CT band, the two strongest absorption lines at 395 nm and 465 nm are comparative, so these three phosphors are good red phosphor candidates for violet or blue LEDs. For the excitation spectrum of phosphor AgEu(MoO4)2, intensities of CT band and the absorption line at 395 nm are much weaker than that of line at 465 nm, thus phosphor AgEu(MoO4)2 is only suit for GaN-based blue LED.  相似文献   

8.
Polyfluorene represents a unique model to study the influence of intramolecular conformation on the electronic properties of chromophores with an extended π-conjugation. According to the degree of planarity between the adjacent repeat units the electronic and optical properties can change substantially. This peculiar spectroscopic behavior has been described by identifying different phases, namely the glassy, the γ- and the β-phase. Here, we present low-temperature single-molecule spectroscopy of a series of oligofluorenes differing in the number of monomeric units, in order to gain information on the influence of chain length on the polymorphism. By monitoring the energy of the 0-0 transition we have classified single molecules belonging to the different phases. We demonstrate that a large number of molecules start to form the β-phase only when more than 9 repeat units constitute the molecular chain. The implications for the control of morphology in polyfluorene thin films are discussed.  相似文献   

9.
We study the modification of fluoride single crystals after irradiation with femtosecond laser pulses for a range of incident intensities from well below to near damage threshold. The behavior of the desorbed positive ion yields, as analyzed by time-of-flight mass spectrometry, is corroborated with temporal characteristics of radiation induced defects in fluorides. The ion yield evolution upon repetitive irradiation (incubation) exhibits the typical reduction of the multi-shot damage threshold with increasing number of pulses. The experimental data point towards an exponential growth of the transient defect density as the origin of this effect. On the other hand, measurements of the time decay of transient defect fluorescence inside the transparent sample show that the defect lifetime may be even longer than tens of milliseconds. To account for the incubation and the increase of the radiation-target coupling efficiency, a model relating the defect lifetime to a pulse-by-pulse accumulation of transient defects is presented, based on a calculation of the free electron density.  相似文献   

10.
YbF3 particles doped with Ho3+ were synthesized by coprecipitation method, from which the ultraviolet and visible emission bands of the Ho3+ and the 480 nm cooperative upconversion emission of Yb3+–Yb3+ are observed under 980 nm excitation. Under the same excitation power, the emission intensity of Ho3+ in coprecipitation method is enhanced by about two times comparing to that in solid-state reaction method. The novel ultraviolet and violet emissions of the Ho3+ are firstly obtained which are centered at 360 (5G25I8),391 (3K75I8),412 (5G45I8), and 446 nm (5G55I8). The luminescence decay profiles of 545 and 652 nm visible emissions were obtained with a 980 nm pulsed laser. The excitation power dependence of the emission intensity was also measured and intensity saturation was observed. Based on the level structures of Ho3+, two- and three-photon processes are suggested to perform populations of 5S2 and 5G3 (Ho3+) levels, respectively. The dominant upconversion mechanism may be attributed to a cooperative sensitization process of two excited states of Yb3+ and energy transfers from Yb3+ to Ho3+.  相似文献   

11.
Below laser fluences where a plasma is formed (the so-called plasma or plume formation threshold) a number of fundamental phenomena can occur where particles such as atomic and molecular ions, atoms and molecular neutrals, and electrons can be emitted. An understanding of such processes is necessary to develop predictive models for material removal from laser irradiated surfaces—at the foundation of laser etching, machining, and pulsed laser deposition. We have reported on a number of the mechanisms for such emission processes. Here, due to space limitations, we present a summary of our studies on the formation of negative alkali ions from single crystal KCl during exposure to pulsed 248-nm radiation at fluences well below the threshold for plasma formation. Despite the high electron affinities of the corresponding halogen atoms, negative halogen ions were not detected. Significantly, the positive and negative alkali ion distributions overlap strongly in time and space, consistent with K formation by the sequential attachment of two electrons to K+. Negative alkali ions are also observed under comparable conditions from LiF, NaCl, and KBr. In each material, the strong overlap between the positive and negative alkali ion distributions, and the lack of detected negative halogen ions, suggest that negative ion formation involves a similar mechanism.  相似文献   

12.
13.
Indium tin oxide (ITO) thin films prepared by the sol–gel method have been deposited by the dip-coating process on silica substrates. CO2 laser is used for annealing treatments. The electrical resistivity of sol–gel-derived ITO thin films decreased following crystallization after exposure to CO2 laser beam. The topological and electrical properties of the irradiated surfaces have been demonstrated to be strongly related to the coating solution and to the laser processing parameters. Optimal results have been obtained for 5 dip-coating layers film from 0.4 mol/l solution irradiated by 0.6 W/m2 laser power density. In this case, homogeneous and optically transparent traces were obtained with a measured sheet resistance of 1.46×102 Ω/□.  相似文献   

14.
Thin films of Er3+-doped lead–niobium germanate have been produced by pulsed laser deposition from Er3+-doped 25PbO2–25Nb2O5–50GeO2 (mol%) transparent glasses with an Er content in the range 0.5–3 wt%. The room-temperature infrared to visible upconversion properties of these thin films have been investigated under 800-nm laser excitation. An energy transfer upconversion mechanism has been identified to be responsible for the population of the 4S3/2:2H11/2 excited level, from which an intense green emission occurs. A rate equation analysis supports the proposed mechanism.  相似文献   

15.
ZnO thin films were prepared by RF magnetron sputtering. The photoluminescence dependence on the growth ambient and annealing temperatures and the atmosphere has been studied. Visible photoluminescence with blue, green, orange, and red emission bands has been demonstrated by controlling the preparation conditions. Complete suppression of the visible emission bands was also realized by annealing the O2-ambient-grown samples in N2 atmosphere at higher temperatures, which indicated the preparation of ZnO thin films with high optical quality.  相似文献   

16.
Local crystalline formation in erbium doped oxyfluoride glass has been obtained under a cw Argon laser irradiation up to 1.8 W pumping power. By exciting at 514 nm, the emission from 800 nm and 850 nm corresponding to the 4S3/2(2H11/2)→4I13/2 electronic transitions have been analyzed both inside and outside the irradiated area. The changes in the emission spectra indicate that the high power Ar laser irradiation has resulted in a localized desvitrification process. The temperature dependence of the fluorescence intensity ratio of the 800 nm and 850 nm emission bands has been used to determine the temperature of the irradiated zone. Moreover, the average lifetime of the 4S3/2(2H11/2) thermalized levels have been measured as a function of the excitation spot position. An important decrease is observed at the irradiated area. These results confirm that a localized cristalline phase has been created by the laser action.  相似文献   

17.
Anodic aluminum oxide (AAO) films with highly ordered pore arrays were prepared in sulfuric, oxalic acids and their mixture solutions, respectively. The photoluminescence (PL) measurements show that AAO films formed in the mixture electrolytes have PL bands in the wavelength range of 300–450 nm, which mainly arise from the oxalic impurities incorporated into AAO films. However, the sulfuric ions have a strong effect on the PL bands. With the increase of the concentration of sulfuric ions in the mixture electrolyte, the blueshift of the PL bands occurs from 410 to 345 nm. The reasons of the results are being discussed.  相似文献   

18.
Mass resolved fission fragment angular distribution was measured in the 28.5 MeV alpha induced fission of233U using recoil catcher technique and direct gamma spectrometry. The angular distribution of 8 fission products were obtained. The angular anisotropies of asymmetric fission products were found to be higher than those of symmetric products indicating a correlation between the fragment angular distribution and the mass distribution.The authors are grateful to Dr. S.K. Kataria and Dr. T. Datta for fruitful discussions. We thank the operation crew of the variable energy cyclotron, Calcutta for their help in carrying out the irradiations. Thanks are due to Dr. P.R. Natarajan, Head of the Radiochemistry Division for his keen interest in the work.  相似文献   

19.
We have investigated the effects of chemical etching on Raman spectra of porous silicon. The as-anodized porous silicon consisted mainly of crystalline silicon, as indicated by the Raman spectra. The background in the spectrum was strong, indicating that the porous silicon surface was rough due to the presence of pores. When chemical etching was performed five times, the Raman spectrum revealed the presence of spherically shaped nanocrystalline silicon whose diameter was around 3.5 nm. Further chemical etching, however, extinguished the nanocrystallites, in addition to smoothing the surface morphology.  相似文献   

20.
We propose an idea of fast cutting a display glass plate where the sample is pre-processed micromachining single shot rear-surface and internal void arrays aligned on working plane prior to glass cleaving. Single shot void morphology is investigated varying input pulse energy, focusing depth, and scanning speed. A femtosecond laser with pulse duration of 172 fs, central wavelength of 780 nm, and repetition rate of 1 kHz is used to fabricate voids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号