首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
超细颗粒卤化银的制备与稳定性   总被引:1,自引:0,他引:1  
  相似文献   

2.
最近,在国外文献中开始出现新型中空卤化银微晶制备方法的报道[1-6]。综其所述,中空卤化银微晶与常规微晶相比,具有以下优点:(1)节省贵重金属银的用量,可达到降低成本的目的;(2)具有高的表面积/体积比,从而具有更高的吸光效率;(3)由于比表面积大,可吸附更多的光谱增感染料及其他有用的照相有机物;(4)显影速度快。这些特点都可使中空颗粒乳剂在不增大颗粒尺寸的前提下提高乳剂的感光性能。  相似文献   

3.
近十五年来,卤化银感光乳剂的制备有了长足的发展,出现了一系列新型卤化银微晶,例如扁平T-颗粒、双层结构颗粒、外延复合晶体、多层结构颗粒、糙面颗粒等等.这些新型微晶乳剂的出现使“微粒高感”成为可能,在此基础上开发出的新一代彩色和黑白感光材料的质量和性能达到了前所未有的高水平.这表明卤化银乳剂制备技术的更新对感光材料的发展起着决定性的作用.  相似文献   

4.
有近160年历史的银盐卤化银乳剂制备的感光材料,到目前为止仍不失为一种优良的信息记录材料。但昂贵的白银的缺乏和消耗,使得节银和降低成本成为银盐感光材料生产中急需要解决的问题。  相似文献   

5.
80 年代以来,许多新型的卤化银微晶已在新开发的各种高质量感光材料中得到应用.近十年来在国内外文献中又出现新型中空卤化银微晶制备方法的报道.本文着重研究一种表面有许多小孔及凹坑的中空卤化银T颗粒的制备方法和感光性能.由于其独特的孔洞结构,使位错、缺陷增加,填隙银离子浓度增加和电子陷阱增多,潜影形成效率提高,从而达到提高乳剂感光性能的目的.  相似文献   

6.
中空卤化银微晶制备方法已在国内外有关文献中报道[1~7],然而关于中空立方体颗粒乳剂的基本性能及实际应用方面的研究尚未见报道.  相似文献   

7.
本文应用表面显影、Dember效应、化学成熟、光谱增感等方法,对照实心立方体溴化银乳剂研究了中空卤化银微晶的结构与光物理性质及感光性能的关系。实验结果表明:(1)中空卤化银的潜影在孔洞处优先形成;(2)中空卤化银微晶中位错、缺陷较多,其填隙银离子浓度较大,电子陷阱较多;(3)中空颗粒表面反应活性高,感光度高,光谱增感效果好;(4)中空颗粒乳剂其反差较大,最大密度较高;(5)上述结果均可归因于中空卤化银微晶所特有的孔洞结构。  相似文献   

8.
半导体光催化氧化技术在环境保护方面具有突出的优点和很强的潜在应用价值,是当前环境净化处理的前沿研究课题之一。贵金属纳米结构的表面等离子体共振效应使之在可见区能够表现出明显的特征吸收,这为可见光驱动的光催化剂的研究提供了新的实践空间和契机。近年来的研究显示:在太阳光或可见光的驱动下,基于银/卤化银(Ag/AgX,X=Cl,Br,I)的复合物对有机污染物的光降解表现出了优良的催化性能,且该类催化剂具有良好的稳定性。随着相关研究的进一步深入和拓宽,积累了丰富的研究成果,形成了一个新的研究方向,也为有机污染物的光降解提供了新的机遇。本文对该类新型表面等离子体光催化剂的工作机制、制备方法、催化活性等方面的研究进展进行了总结和概述。此外,文中还简单论述了该类催化体系在其他前沿领域的研究进展。同时,亦对该方向存在的问题和发展前景做了总结和展望。  相似文献   

9.
采用的鱼明胶样品是从深海鱼的鱼皮提取而得,在成份和物理性质方面鱼明胶与通常使用的动物明胶有显著的差别.研究表明,鱼明胶的蛋白成分中α组分占绝对优势,且其中分子量较小的α2组分又比分子量较大的α1组分含量高得多.在鱼明胶中几乎没有分子量最大的γ组分.其氨基酸残基中,脯氨酸和羟脯氨酸的含量比动物胶低,而蛋氨酸含量却明显高于后者.鱼明胶还具有较低的胶凝温度.这些特点可能使之适宜作为分散介质来制备AgBrI纳米粒子乳剂.此外,鱼明胶中含有较多含硫物质,而且杂质铁主要以三价形式存在.并且进一步利用鱼明胶作为保护载体,在广泛的胶银比(即明胶量与银量之比值)范围(从8∶ 1到4∶ 1)获得了平均粒径为14 nm的 AgBrI纳米粒子乳剂.该乳剂具有良好的单分散性和热稳定性.对纳米粒子乳剂进行硫-金协同敏化可以提高其感光度.若适当增加敏化剂用量和适当延长敏化时间这种协同敏化作用的效果更好.  相似文献   

10.
卤化银成像体系中的纳米化学*   总被引:6,自引:0,他引:6  
纳米化学研究的对象是尺寸在1 ~100nm的化学实体,它构成了一个介乎微观相和宏观相之间的介观相 (mesoscopic phase),介观相不仅反映了化学实体在尺寸上从微观向宏观的过渡,而且表现了一系列特殊的效应和功能。本文探讨了纳米化学对卤化银成像体系的冲击和卤化银成像过程的研究对纳米化学的发展所做出的贡献。  相似文献   

11.
银盐扩散型CTP(Computer-To-Plate)版材基于银盐扩散转移原理.本文利用高分辨率的场效应扫描电子显微镜及CCD等手段研究了几种因素对该类版材物理显影银堆积状态及物理显影过程的影响.清晰地观察到不同曝光区物理显影银的堆积状态,在弱曝光区,银颗粒堆积紧密,是版材具有亲油性的主要原因.使用不同类型络合剂分别得到了颗粒状、树枝状等各种形态的物理显影银,表明络合剂对银颗粒形态有显著影响.通过CCD装置对版材上物理显影过程的实时原位监测,从动力学的角度解释了络合剂、显影温度对物理显影银堆积状态的影响.  相似文献   

12.
本文报道了磁处理对明胶中单注法制备卤化银乳剂的影响,SEM照片及粒径分布曲线表明,在本实验磁场条件下,经磁化处理的乳剂较未经处理的乳剂,平均粒径大,颗粒分布均匀,晶粒分散状态良好.机理分析认为磁场处理影响了溶液中离子的水合程度,而且能增加溶液的有序程度,这两方面的因素导致了磁处理和未经磁处理之间的差异.磁处理能够影响明胶中卤化银的结晶过程,这可能为控制制备胶体中颗粒的大小及分布提供新思路.  相似文献   

13.
本文以鱼明胶为分散介质,采用双注法制备AgBr/I纳米粒子乳剂,控制银盐与卤溶液的注入速率(R),以TEM观测了粒子的生长,据此探讨了该乳剂中AgBr/I纳米粒子平均粒径(d)及分布(±σ)与反应条件的关系.发现在R为1.3 mmol/min-8 mmol/min范围内,随R增大,d减小,R-d间呈良好的线性关系.除个别外,±σ值变化不明显.对于该纳米粒子乳剂采用二氧化硫脲进行化学敏化,结果表明:适当增加二氧化硫脲的加入量和延长敏化时间,均可有效提高乳剂的感光度,并有助于改善其低照度互易律失效,此外还揭示了曝光光源色温对该乳剂感光性能的影响.  相似文献   

14.
本文利用可控双注仪设计并制备了三种系列共二十种片状多层结构溴碘化银乳剂及其外延体。用X射线能谱仪(EDS)和电镜验证所设计的碘离子多层分布和氯化银外延体的位置,研究了它们的光物理性质和感光性能,发现外延AgCl对主体微晶性质的影响随层次结构和外延位置不同有很大的变化。若主体微晶结构合理,光电子利用效率已经较高,电子与空穴分离好,外延后其乳剂的感光度提高幅度反而不大。相反,若主体微晶的结构不合理,则外延可能导致两种结果:或增加潜影形成效率,提高感光度;或造成潜影分散,降低感光度。  相似文献   

15.
研究了不同光源、光照时间、反应物浓度等对绿色银胶形成的影响,分别制备了绿色银胶和黄色银胶.透射电镜显示,它们的平均粒径分别为100nm和40nm.绿色银胶在393.9nm和713.3nm处有两个吸收峰;黄色银胶在419.3nm处有一较宽的吸收峰.它们的最强共振散射峰位于470nm处;绿色银胶在340nm和80nm还有两个小共振峰.  相似文献   

16.
通常人们把粒径1~100 nm之间的金属、半导体、氧化物及各种化合物的粒子或者粒子的集合体称为纳米粒子。近年来的纳米粒子化学和物理的迅速发展已经证实:随着原子或分子簇尺寸的减小,表面原子的比例逐渐增大,粒子表现了与块状材料不同的特性,其粒子显示出以“量子尺寸效应”为主的特点,特性表现出种种异常[1,2]。  相似文献   

17.
环氧氯丙烷法制备超细β-FeOOH粒子   总被引:3,自引:0,他引:3  
FeCl3水溶液和环氧氯丙烷作用,可生成β-FeOOH溶胶,粒子外形呈纺锤状,粒径分布均匀。溶胶经表面处理,可制得油溶性β-FeOOH超细粒子。采用多步反应法,还可控制粒子的大小,并保持粒子外形的各向异性不变。  相似文献   

18.
利用氢氧化钾对苯乙烯-马来酸酐交替共聚物(SMA)进行水解,所得中等皂化程度的SMA水解产物(SMAA)在水溶液中具有刚性棒状直链构型;将此特殊结构的大分子作为分散剂用于苯乙烯悬浮聚合,通过控制搅拌速度和油水比,可得到梭形聚苯乙烯粒子;在优化条件下,粒子平均长度6.8 mm,宽度1.4 mm,厚度0.5 mm,长径比约5.0.其可能的机理为,中等皂化程度的刚棒直链型SMAA在聚合物"软粒子"表面能形成难以"回复"的有效保护层,使由剪切形成的变形聚合物"软粒子"在聚合过程中能保持形状和尺寸的稳定,从而得到梭形聚合物粒子.  相似文献   

19.
以聚乙烯醇(PVA)为支撑前体合成出改性的铝交联蒙脱土与铝交联累托土。采用XRD、N2低温吸附脱附法、IR等手段对它们进行了表征,并研究了它们在不同时间与温度条件下的水蒸汽减活动力学。研究结果表明,PVA的改性有助于铝交联粘土层间距与比表面积的增大及热稳定性与水热稳定性的提高,粘土基质对其热稳定性与水热稳定性有显著影响,该类催化材料的水蒸汽减活动力学遵循一级衰减反应方程式,其减活速率常数与温度的函数关系可用一个指数函数的经验式表示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号