首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uridine 5'-diphosphate- (UDP-)glucuronosyltransferase (UGT) family of enzymes catalyzes the conjugation of chemicals containing a suitable nucleophilic atom with glucuronic acid. Despite the importance of glucuronidation as an elimination and detoxification mechanism for drugs, environmental chemicals, and endogenous compounds, the structural features of substrates that confer isoform selectivity are poorly understood. The relationship between the local molecular structure of nucleophilic atoms of chemicals and the ability of UGT isoforms to glucuronidate the nucleophilic atoms was investigated here. The proximity of an aromatic ring to the nucleophilic atom was highly associated with a greater likelihood of glucuronidation by most UGT isoforms. Similarly, most UGT isoforms were found to have a statistically significant preference for oxygen over nitrogen as the nucleophilic atom. The converse was established only for UGT1A4. Na?ve Bayes models were trained to predict the site of glucuronidation for eight UGT isoforms on the basis of the partial charge and Fukui function of the nucleophilic atom and whether an aromatic ring was attached to the nucleophilic atom. On average, the cross-validated sensitivity and specificity of the models were approximately 75-80%. For all but UGT2B7, the area under the receiver operating characteristics curve of the model was greater than 0.8, indicating strong predictive ability. A chemical diversity analysis of the currently available data indicates bias toward chemicals containing phenolic groups, and it is likely that the availability of chemical data sets with greater diversity will facilitate further insights into the structural features of substrates that confer enzyme selectivity.  相似文献   

2.
Prim‐O‐glucosylcimifugin (PGCN) and cimifugin (CN) are major constituents of Radix Saposhnikoviae that have antipyretic, analgesic and anti‐inflammatory pharmacological activities. However, there were few reports with respect to the metabolism of PGCN and CN in vitro. In this paper, we describe a strategy using ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) for fast analysis of the metabolic profile of PGCN and CN in human liver microsomes. In total, five phase I metabolites of PGCN, seven phase I metabolites and two phase II metabolites of CN were identified in the incubation of human liver microsomes. The results revealed that the main phase I metabolic pathways of PGCN were hydroxylation and hydrolysis reactions. The phase I metabolic pathways of CN were found to be hydroxylation, demethylation and dehydrogenation. Meanwhile, the results indicated that O‐glucuronidation was the major metabolic pathway of CN in phase II metabolism. The specific UDP‐glucuronosyltransferase (UGT) enzymes responsible for CN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A9, UGT2B4 and UGT2B7 might play major roles in the glucuronidation of CN. Overall, this study may be useful for the investigation of metabolic mechanism of PGCN and CN, and it can provide reference and evidence for further pharmacodynamic experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
《Electrophoresis》2018,39(12):1478-1481
Glucuronidation catalyzed by uridine‐5′‐diphospho‐glucuronosyl‐transferases (UGTs) is the most important reaction in phase II metabolism of drugs and other compounds. O‐glucuronidation is more common than N‐glucuronidation. The anesthetic, analgesic and antidepressive drug ketamine is metabolized in phase I by cytochrome P450 enzymes to norketamine, hydroxynorketamine (HNK) diastereomers and dehydronorketamine (DHNK). Equine urine samples collected two hours after ketamine injection were treated with β‐glucuronidase and analyzed with three enantioselective capillary electrophoresis assays. Concentrations of HNK diastereomers and norketamine were significantly higher in comparison to untreated urine and an increase of ketamine and DHNK levels was found in selected but not all samples. This suggests that O‐glucuronides of HNK and N‐glucuronides of the other compounds are formed in equines. N‐glucuronidation of norketamine was studied in vitro with liver microsomes of different species and the single human enzyme UGT1A4. With equine liver microsomes (ELM) a stereoselective N‐glucuronidation of norketamine was found that compares well to the results obtained with urines collected after ketamine administration. No reaction was observed with canine liver microsomes, human liver microsomes and UGT1A4. Incubation of ketamine and DHNK with ELM did not reveal any glucuronidation. Enantioselective CE is suitable to provide insight into the phase II metabolism of ketamine and its metabolites.  相似文献   

4.
Celastrol, a quinone methide triterpene isolated from Tripterygium wilfordii Hook F., has various biochemical and pharmacological activities, and is now being developed as a promising anti-tumor agent. Inhibitory activity of compounds towards UDP-glucuronosyltransferase (UGT) is an important cause of clinical drug-drug interactions and herb-drug interactions. The aim of the present study is to investigate the inhibition of celastrol towards two important UDP-glucuronosyltransferase (UGT) isoforms UGT1A6 and UGT2B7. Recombinant UGT isoforms and non-specific substrate 4-methylumbelliferone (4-MU) were used. The results showed that celastrol strongly inhibited the UGT1A6 and 2B7-mediated 4-MU glucuronidation reaction, with 0.9 ± 0.1% and 1.8 ± 0.2% residual 4-MU glucuronidation activity at 100 μM of celastrol, respectively. Furthermore, inhibition kinetic study (Dixon plot and Lineweaver-Burk plot) demonstrated that celastrol noncompetitively inhibited the UGT1A1-mediated 4-MU glucuronidation, and competitively inhibited UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameters (Ki) were calculated to be 0.49 μM and 0.045 μM for UGT1A6 and UGT2B7, respectively. At the therapeutic concentration of celastrol for anti-tumor utilization, the possibility of celastrol-drug interaction and celastrol-containing herbs-drug interaction were strongly indicated. However, given the complicated nature of herbs, these results should be viewed with more caution.  相似文献   

5.
Tectorigenin and irigenin are biologically active isoflavones of Belamcanda chinensis (L.) DC. Previous studies indicated that both compounds could be metabolized in vivo; however, the kinetic parameters of enzymes involved in the metabolization of tectorigenin and irigenin have not been identified. The aim of this study was to investigate UGTs involved in the glucuronidation of tectorigenin and irigenin and determine enzyme kinetic parameters using pooled human liver microsomes (HLMs) and recombinant UGTs. Glucuronides of tectorigenin and irigenin were identified using high-performance liquid chromatography (HPLC) coupled with mass spectrometry and quantified by HPLC using a response factor method. The results showed that tectorigenin and irigenin were modified by glucuronidation in HLMs. One metabolite of tectorigenin (M) and two metabolites of irigenin (M1 and M2) were detected. Chemical inhibition and recombinant enzyme experiments revealed that several enzymes could catalyze tectorigenin and irigenin glucuronidation. Among them, UGT1A1 and UGT1A9 were the primary enzymes for both tectorigenin and irigenin; however, the former mostly produced irigenin glucuronide M1, while the latter mostly produced irigenin glucuronide M2. These findings suggest that UGT1A1 and UGT1A9 were the primary isoforms metabolizing tectorigenin and irigenin in HLMs, which could be involved in drug–drug interactions and, therefore, should be monitored in clinical practice.  相似文献   

6.
Glucuronidation plays critical role in the elimination of bergenin; however the metabolic mechanism of UDP‐glucuronosyltransferases (UGTs) in the process remains to be investigated. In this study, the kinetics of bergenin glucuronidation by pooled human liver microsomes (HLMs) and 12 recombinat UGT isozymes were investigated. The glucuronidation of bergenin can be shown in HLMs with a Km value of 231.62 ± 14.08 µm and a Vmax value of 2.17 ± 0.21 nmol/min/(mg protein). Among the 12 human UGTs investigated, UGT1A1 was identified as the major isoform catalyzing the glucuronidation of bergenin [Km value of 200.37 ± 26.73 µm and Vmax value of 1.88 ± 0.26 nmol/min/(mg protein)]. The bergenin glucuronosyltransferase activities in HLMs and UGT1A1 were inhibited by phenylbutazone, estradiol and bilirubin. The results demonstrate that bergenin glucuronidation in HLMs is specifically catalyzed by UGT1A1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Ethyl glucuronide (EtG), a minor metabolite of ethanol, is used as a marker of alcohol consumption in a variety of clinical and forensic settings. At present there are very few studies of UDP-glucuronosyltransferases (UGT), responsible for catalyzing EtG formation, and the possible effect of nutritional components, e.g. flavonoids, which are extensively glucuronidated, on EtG formation has not been addressed at all. The following incubation conditions were optimized with regard to previously published conditions: buffer, substrate concentration, and incubation time. Isolation of EtG from the incubation mixture was also optimized. Recombinant UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B10, 2B15) were screened for their activity towards ethanol, and kinetic data were then established for all enzymes. It was decided to study the effect of the flavonoids quercetin and kaempferol on glucuronidation of ethanol. Isolation was by solid-phase extraction (SPE) to minimize matrix effects. Analysis was performed by liquid chromatography–tandem mass spectrometry (LC–MS–MS), with EtG-d5 as the internal standard. SPE was vital to avoid severe ion suppression after direct injection of the incubation solution. EtG formation was observed for all enzymes under investigation; their kinetics followed the Michaelis–Menten model, meaning the maximum reaction rate achieved at saturating substrate concentrations (V max) and the substrate concentration at which the reaction rate is half of V max (Michaelis–Menten constant, K m) could be calculated. The highest rate of glucuronidation was observed with UGT1A9 and 2B7. After co-incubation with both flavonoids, formation of EtG was significantly reduced for all enzymes except for UGT2B15, whose activity did not seem to be affected. Results reveal that multiple UGT isoforms are capable of catalyzing glucuronidation of ethanol; nevertheless, the effect of UGT polymorphism on glucuronidation of ethanol needs further study. Formation of EtG is inhibited by the flavonoids under investigation. Obviously, nutritional components affect conversion of ethanol to EtG. This observation may serve as a partial explanation of its variable formation in man.
Figure
Dixon Plot for determination of the inhibitory constant Ki for UGT1A9 and quercetin  相似文献   

9.
Inhibition of uridine diphosphate glucuronosyltransferase (UGT), a major drug-metabolyzing enzyme, has been studied using an on-line drug-metabolism system integrated into capillary electrophoresis. Microsomes isolated from rat liver were encapsulated in tetramethoxysilane (TMOS)-based silica matrices within a capillary in a single step under mild conditions. This microsome-immobilized capillary column allows both the metabolism of drugs and determination of the metabolites in a single capillary simultaneously, just by injecting the substrate-coenzyme mixture onto the column. Glucuronidation of acetaminophen, a widely used pharmaceutical analgesic and antipyretic agent, was investigated using this system. The glucuronidation was inhibited by 4-nitrophenol (4NP) or probenecid that was injected onto a column along with the substrate-coenzyme mixture. On the other hand, valproate did not inhibit the metabolizing reaction. The extents of inhibition using encapsulated UGT were almost the same as those obtained using free UGT. On the other hand, this electrophoretic enzyme-inhibitor assay in microfabricated devices consumes 10(4) less sample and 10(3) less microsome per experiment compared to the conventional reaction schemes. These results demonstrate that this on-line system can circumvent laborious procedures for the isolation and determination of drug metabolites from the reaction mixtures required in the conventional schemes and can provide an attractive alternative technique for the analysis of drug interactions in the metabolic pathways.  相似文献   

10.
Glucuronidation is a Phase 2 metabolic pathway responsible for the metabolism and excretion of testosterone to a conjugate testosterone glucuronide. Bioavailability and the rate of anabolic steroid testosterone metabolism can be affected upon UGT glucuronidation enzyme alteration. However, there is a lack of information about the in vitro potential assessment of UGT2B17 inhibition by salicylic acid. The purpose of this study is to investigate if UGT2B17 enzyme activity is inhibited by salicylic acid. A UGT2B17 assay was developed and validated by HPLC using a C18 reversed phase column (SUPELCO 25 cm × 4.6 mm, 5 μm) at 246 nm using a gradient elution mobile phase system: (A) phosphate buffer (0.01 M) at pH = 3.8, (B) HPLC grade acetonitrile and (C) HPLC grade methanol. The UGT2B17 metabolite (testosterone glucuronide) was quantified using human UGT2B17 supersomes by a validated HPLC method. The type of inhibition was determined by Lineweaver–Burk plots. These were constructed from the in vitro inhibition of salicylic acid at different concentration levels. The UGT2B17 assay showed good linearity (R2 > 0.99), acceptable recovery and accuracy (80–120%), good reproducibility and acceptable inter and intra-assay precision (<15%), low detection (6.42 and 2.76 μM) and quantitation limit values (19.46 and 8.38 μM) for testosterone and testosterone glucuronide respectively, according to ICH guidelines. Testosterone and testosterone glucuronide were found to be stable up to 72 h in normal laboratory conditions. Our investigational study showed that salicylic acid uncompetitively inhibited UGT2B17 enzyme activity. Thus, drugs that are substrates for the UGT2B17 enzyme have negligible potential effect of causing interaction with salicylic acid in humans.  相似文献   

11.
Gossypol, the polyphenolic constituent isolated from cottonseeds, has been used as a male antifertility drug for a long time, and has been demonstrated to exhibit excellent anti-tumor activity towards multiple cancer types. The toxic effects of gossypol limit its clinical utilization, and enzyme inhibition is an important facet of this. In the present study, in vitro human liver microsomal incubation system supplemented with UDPGA was used to investigate the inhibition of gossypol towards UGT1A1, 1A9 and 2B7-mediated metabolism of xenobiotics and endogenous substances. Estradiol, the probe substrate of UGT1A1, was selected as representative endogenous substance. Propofol (a probe substrate of UGT1A9) and 3'-azido-3'-deoxythimidine (AZT, a probe substrate of UGT2B7) were employed as representative xenobiotics. The results showed that gossypol noncompetitively inhibits UGT-mediated estradiol-3-glucuronidation and propofol O-glucuronidation, and the inhibition kinetic parameters (K(i)) were calculated to be 34.2 and 16.4 μM, respectively. Gossypol was demonstrated to exhibit competitive inhibition towards UGT-mediated AZT glucuronidation, and the inhibition kinetic parameter (K(i)) was determined to be 14.0 μM. All these results indicated that gossypol might induce metabolic disorders of endogenous substances and alteration of metabolic behaviour of co-administered xenobiotics through inhibition of UGTs' activity.  相似文献   

12.
Corydaline is a bioactive alkaloid with various antiacetylcholinesterase, antiallergic, and antinociceptive activities found in the medicinal herb Corydalis Tubers. The inhibitory potential of corydaline on the activities of seven major human cytochrome P450 and four UDP-glucuronosyltransferase enzymes in human liver microsomes was investigated using LC-tandem MS. Corydaline was found to inhibit CYP2C19-catalyzed S-mephenytoin-4'-hydroxylatoin and CYP2C9-catalyzed diclofenac 4-hydroxylation, with K(i) values of 1.7 and 7.0 mM, respectively. Corydaline also demonstrated moderate inhibition of UGT1A1-mediated 17b-estradiol 3-glucuronidation and UGT1A9-mediated propofol glucuronidation with K(i) values of 57.6 and 37.3 mM, respectively. In the presence of corydaline, CYP3A-mediated midazolam hydroxylation showed a decrease with increasing preincubation time in a dose-dependent manner with K(i) values of 30.0 mM. These in vitro results suggest that corydaline should be evaluated for potential pharmacokinetic drug interactions in vivo due to potent inhibition of CYP2C19 and CYP2C9.  相似文献   

13.
Hanafi  Rasha  Spahn-Langguth  Hilde  Mahran  Laila  Heikal  Ola  Hanafy  Abeer  Rieger  Hans  Moln&#;r  Imre  Aboul-Enein  Hassan Y. 《Chromatographia》2012,75(9-10):469-477

Following administration of the acidic drug tolmetin (TOL) anaphylactic reactions occurred, which have been hypothesized to be related to the formation of reactive acyl glucuronides. Recently, glutathione adducts have been detected upon incubation of TOL with human liver microsomal preparations, which proved that oxidative activation might also be a pathway of formation of reactive—possibly toxic—glutathione metabolites of TOL. The aim of this work was to develop a new and robust HPLC method to investigate the in vivo effect of 2 coadministered drugs/nutritional supplements on the kinetics of TOL in rats (cimetidine; CIM) known to be a potent inhibitor of CYP3A4, an enzyme that catalyzes the oxidative metabolism and Quercetin; and QUE which induces UGT1A6, an enzyme involved in glucuronidation of acidic drugs. DryLab®, a computer simulation software package, was used to assist in the development and optimization of the HPLC method used for separation of TOL and the two potential kinetic modulators together with three potential internal standards (zomepirac, carvedilol and fexofenadine). The method was validated in biological samples obtained from rats. Non-compartmental pharmacokinetic analysis of data obtained from plasma and rat liver tissue showed significantly higher concentrations of TOL in the presence of CIM; and significantly longer elimination half-life lives in presence of QUE, which implies that drugs or food components interacting with CYP3A4 cause alteration in the metabolic oxidative biotransformation of TOL in vivo leading to accumulation of TOL in the body through a decrease of its clearance. These findings might account for to the side-effects associated with TOL when co-administered with such kinetic modulators.

  相似文献   

14.
Binary mixtures of hexafluoroisopropanol with either methanol or acetone are analyzed via classical molecular dynamics simulations and quantum cluster equilibrium calculations. In particular, their populations and thermodynamic properties are investigated with the binary quantum cluster equilibrium method, using our in-house code Peacemaker 2.8, upgraded with temperature-dependent parameters. A novel approach, where the final density from classical molecular dynamics, has been used to generate the necessary reference isobars. The hydrogen bond network in both type of mixtures at molar fraction of hexafluoroisopropanol of 0.2, 0.5, and 0.8 respectively is investigated via the molecular dynamics trajectories and the cluster results. In particular, the populations show that mixed clusters are preferred in both systems even at 0.2 molar fractions of hexafluoroisopropanol. Enthalpies and entropies of vaporization are calculated for the neat and mixed systems and found to be in good agreement with experimental values.  相似文献   

15.
A novel HIF (hypoxia-inducible factor)-1α inhibitor, the (aryloxyacetylamino)benzoic acid derivative LW6, is an anticancer agent that inhibits the accumulation of HIF-1α. The aim of this study was to characterize and determine the structures of the metabolites of LW6 in ICR mice. Metabolite identification was performed using a predictive multiple reaction monitoring-information dependent acquisition-enhanced product ion (pMRM-IDA-EPI) method in negative ion mode on a hybrid triple quadrupole-linear ion trap mass spectrometer (QTRAP). A total of 12 metabolites were characterized based on their MS/MS spectra, and the retention times were compared with those of the parent compound. The metabolites were divided into five structural classes based on biotransformation reactions: amide hydrolysis, ester hydrolysis, mono-oxidation, glucuronidation, and a combination of these reactions. From this study, 2-(4-((3r,5r,7r)-adamantan-1-yl)phenoxy)acetic acid (APA, M7), the metabolite produced via amide hydrolysis, was found to be a major circulating metabolite of LW6 in mice. The results of this study can be used to improve the pharmacokinetic profile by lowering the clearance and increasing the exposure relative to LW6.  相似文献   

16.
Gilbert's syndrome, due to reduced hepatic bilirubin glucuronidation is associated with the presence of two extra nucleotides (TA) in the promoter region of the UDP-glucuronosyltransferase 1 (UGT1A1) gene. A rapid method was developed to detect this genetic polymorphism, using double gradient denaturing gradient gel electrophoresis (DG-DGGE). The promoter region of the UGT1A1 gene was amplified with a 40-mer GC-clamp attached to the 5'-end of the reverse primer. The polymerase chain reaction (PCR) product was then separated by DG-DGGE using denaturant concentrations of 15-25% and polyacrylamide concentrations of 6-12%. The (TA)6/(TA)6 homozygotes were clearly distinguished from both (TA)7/(TA)7 homozygotes and (TA)6/(TA)7 heterozygotes. The (TA)7 allele frequency was consistent with that previously reported and elevated bilirubin levels correlated with the presence of the (TA)7 allele. The DG-DGGE method described will make detection for this polymorphism fast, simple, nonradioactive and suitable for a clinical routine diagnostic laboratory, helping to establish the role of this polymorphism in individuals with jaundice due to multiple causes.  相似文献   

17.
N-containing heteroaromatics are important substructures found in numerous natural or synthetic alkaloids. The diversity of the structures encountered, as well as their biological and pharmaceutical relevance, have motivated research aimed at the development of new economical, efficient and selective synthetic strategies to access these compounds. Over more than 100 years of research, this hot topic has resulted in numerous so-called "classical synthetic methods" that have really contributed to this important area. However, when the selective synthesis of highly functional heteroaromatics like indoles, quinolones, indoxyls, etc. is considered these methods remain limited. Recently transition metal-catalysed (TM-catalysed) procedures for the synthesis of such compounds and further transformations, have been developed providing increased tolerance toward functional groups and leading generally to higher reaction yields. Many of these methods have proven to be the most powerful and are currently applied in target- or diversity-oriented syntheses. This review article aims at reporting the recent developments devoted to this important area, focusing on the use of heterogeneous catalysed procedures that include either the formation of the heterocyclic ring towards the nuclei or their transformations to highly substituted compounds.  相似文献   

18.
Aruga R 《Talanta》2003,60(5):937-944
On the basis of the results of previous studies, the problem of multivariate classification in the presence of the so-called radial or V-shaped data has been briefly re-examined. Taking into account that the radial data, in the absence of preliminary transformations, usually lead to classifications of samples meaningless from a chemical point of view, five different data transformations have been evaluated and compared in the case of both hypothetical and real samples (real samples, in particular, consisted of archaeological ceramic shards to be classified on the basis of provenance). The following transformations have been used: closure to 100, log row centering, log double centering, row centering, and double centering. The transformed data were then classified by means of hierarchical clustering and principal component analysis (PCA). It has been demonstrated that only the first three transformations lead to correct classifications of radial data, and the causes of this fact have been explained.  相似文献   

19.
A new procedure for determining the calibration function able to relate retention and operative parameters to molecular weight of the species in thermal field flow (ThFFF) under thermal field programming (TFP) conditions is presented. The procedure involves determining the average values of retention parameters under TFP and determining a numerical function related to the temperature variations that occur during TFP. The calibration parameters are obtained by a procedure fitting the retention and operative parameters that hold true at the beginning of the TFP. The procedure is closely related to the one previously developed to calibrate the retention time axis under TFP ThFFF and, together, they constitute a full calibration procedure. Experimental validation was performed with reference to polystyrene (PS)-decalin and PS-THF systems. The calibration functions here obtained were compared to those derived by the classical procedure at constant thermal field ThFFF to obtain the calibration function at variable cold wall temperatures. Excellent agreement was found in all cases proving "universality" of the ThFFF calibration concept, i.e. it is independent of the particular system on which it was determined and can thus be extended to ThFFF operating under TFP. The new procedure is simpler than the classical one since it requires less precision in setting the instrumentation and can be obtained with fewer experiments. The potential applications for the method are discussed.  相似文献   

20.
A simple and sensitive assay for glucuronidation activity of 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan (CPT-11), in human liver microsomes by high-performance liquid chromatography (HPLC) with fluorescence detection is reported. The method was validated for the determination of SN-38 glucuronide (SN-38G) with respect to specificity, linearity, recovery, stability, precision, accuracy, and limits of detection and quantitation. There was no interference from matrix and non-enzymatic reactions. The calibration curve for SN-38G was linear from 5 to 500 nM. Average recoveries ranged from 98 to 100% in spiked human liver microsome samples, and the SN-38G was stable at 4 degrees C for at least 72 h. The newly developed method was found to be more sensitive and selective than previous methods using thin layer chromatography and HPLC. The limit of quantitation for SN-38G was 5 nM (2.5 pmol/assay). The intra- and inter-day precision and accuracy were less than 7 and 4%, respectively. The intra- and inter-day precision of enzyme assay for UDP-glucuronosyltransferase (UGT) activity toward SN-38 in human liver microsomes was less than 4%. With this improved sensitivity, the kinetics of SN-38 glucuronidation in human liver microsomes could be determined more precisely. Therefore, this method is applicable to in vitro study on the side effects and drug interactions of CPT-11 using small amounts of biological sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号