首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Gas-phase reaction of C(1)F3S(2)O2O(3)C(4)H2C(5)F3 and F(16) is investigated using DFT method. The geometries of various stationary points and their relative energies are obtained from 6-31+G*, 6-311G**, and 6-311++G** levels. In the SN2(C) reaction leading to the cleavage of the C(4)–O(3) bond, the reaction complex results from attacking of F at a hydrogen atom H11 attached to carbon atom C(4). Afterward, F is attacking the atom C(4) from the backside of the atom O(3) with the help of the neighboring effect, and meanwhile a multi-membered ring, F(16)–H(11)–C(4)–C(5)–F(16), is being formed. The SN2(C) reaction is irreversible. On the contrary, the SN2(S) reaction leading to the cleavage of the S(2)–O(3) bond is reversible, and it is initiated by attacking of F at the atom S(2) from the backside of the atom O(3). The products of the reaction CF3SO3CH2CF3 +F should be, thermodynamically, controlled due to the reversibility of the SN2(S) reaction, and those result, chemospecifically, from the cleavage of the C–O bond. At last, the SCRF calculations confirm that the solvent effect is preferable to the SN2(C) reaction.  相似文献   

2.
Preparation of Pt/C Catalyst with Solid Phase Reaction Method   总被引:10,自引:0,他引:10  
The Pt/C catalyst was prepared with solid phase reaction method (Pt/C(S)) for the first time.Its Performances were compared with that prepared by the traditional liquid phase reaction method. The results demonstrate that the electrocatalytic activity of Pt/C catalyst with solid phase reaction method for methanol oxidation is higher than that with liquid phase reaction method. XRD and TEM measurements indicate that the Pt/C(S) possesses low crystalline extent and small particle size.  相似文献   

3.
用混合煅烧法制备了CuWO4/C复合物,并采用XRD、SEM、和BET等技术对其结构进行表征。以CuWO4/C复合物为催化剂、过氧化氢为氧化剂、1-乙基-3-甲基咪唑硫酸乙酯盐离子液体为萃取剂氧化脱除模拟油中的二苯并噻吩(DBT)。考察了反应温度、双氧水加入量、萃取剂加入量等因素对脱硫效果的影响。结果表明,在相同的实验条件下,相比于CuWO4,CuWO4/C复合物具有更高的脱硫率。在模拟油为5.0 mL、催化剂加入量为0.02 g、H2O2加入量0.2 mL、萃取剂加入量1.0 mL、反应温度70℃、反应时间180 min的最佳实验条件下,DBT转化率可达到98.2%,催化剂循环使用四次活性没有明显降低。  相似文献   

4.
0引言近年来,直接甲醇燃料电池(DMFC)由于其燃料来源丰富、价格低廉、甲醇携带和储存安全方便等独特的优越性而越来越受到重视[1]。但是甲醇具有一定的毒性,因此要想实现DMFC在诸如手机、笔记本电脑以及电动车等可移动电源领域的应用,必须探索新的液体燃料以替代有毒性的甲醇。  相似文献   

5.
Synthesis of heteroatom‐containing ladder‐type π‐conjugated molecules was successfully achieved via a palladium‐catalyzed intramolecular oxidative C?H/C?H cross‐coupling reaction. This reaction provides a variety of π‐conjugated molecules bearing heteroatoms, such as nitrogen, oxygen, phosphorus, and sulfur atoms, and a carbonyl group. The π‐conjugated molecules were synthesized efficiently, even in gram scale, and larger π‐conjugated molecules were also obtained by a double C?H/C?H cross‐coupling reaction and successive oxidative cycloaromatization.  相似文献   

6.
The reaction between SiCl4 and O2 at 1 atm between 25 and 1200°C has been followed by mass spectrometry. Below 600°C no reaction with O2 is noted. Above 600°C the reaction proceeds in two steps. Between 800 and 1000°C the 28Si/32O2 peak height ratio is constant with no evolution of Cl2. It is suggested that silicon oxychlorides are being formed in this temperature regime. Above 1000°C the reaction between SiCl4 and O2 intensifies with concomitant production of Cl2. It is suggested that above 1000°C the reaction SiCl4 + O2 → SiO2 + Cl2 becomes important.

At low temperatures (<800°C) adsorbed H2O and OH groups from the surface of the fused silica tube react with SiCl4 to form HCl. The importance of this reaction decreases with increasing temperature. The increased production of HCl above 1000°C is ascribed to H2O and H2 diffusing from the tube.  相似文献   


7.
《Comptes Rendus Chimie》2014,17(9):952-957
In water, Al powder becomes a powerful reducing agent, transforming in cyclohexyl either one or both benzene rings of aromatic compounds such as biphenyl, fluorene and 9,10-dihydroanthracene under mild reaction conditions in the presence of noble metal catalysts, such as Pd/C, Rh/C, Pt/C, or Ru/C. The reaction is carried out in a sealed tube, without the use of any organic solvent, at low temperature. Partial aromatic ring reduction was observed when using Pd/C, the reaction conditions being 24 h and 60 °C. The complete reduction process of both aromatic rings required 12 h and 80 °C with Al powder in the presence of Pt/C.  相似文献   

8.
Carbon-supported platinum-decorated nickel nanoparticles (denoted as Pt-Ni/C) with intimate contact of Pt and Ni are prepared by a galvanic displacement reaction between Ni/C nanoparticles and PtCl62− in aqueous solution. It demonstrates a higher mass activity and stability to methanol oxidation reaction than conventional Pt/C and PtRu/C catalysts by a rotating disk electrode in acid solution, which could be attributed to the modified electronic structure of the Pt-Ni/C nanoparticles.  相似文献   

9.
新型环保绝缘气体七氟异丁腈(C4)在高压输电应用中备受关注. 本文采用多种高精度量子化学理论方法研究了C4吸附电子后形成C4-负离子的结构、 光谱、 寿命以及与CO2的反应机理和动力学. 结果表明, 电子进入C≡N的π*反键轨道, 通过弯曲C—C=N形成C4-负离子, 绝热电子亲合能的最佳预测值为0.30 eV. 在 0~2 eV范围内C4-具有显著的光电子吸收峰, 亚稳态C4-负离子经约9 kJ/mol能垒断裂C—F键生成稳定的长寿命[F...(CF3)2CCN]-中间体. C4-+CO2反应存在进攻F或CN上的C和N 3种复合-解离机理, 在电气应用条件下, 以CO2进攻氰基CN途径为主, 诱发负电荷从CN向CO2转移.  相似文献   

10.
A detailed computational study is performed on the unknown radical-molecule reactions between HCO/HOC and acetylene (C2H2) at the CCSD(T)/6-311G(2d,p)//B3LYP/6-311G(d,p)+ZPVE, Gaussian-3//B3LYP/6-31G(d), and Gaussian-3//MP2(full)/6-31G(d) levels. For the HCO + C2H2 reaction, the most favorable pathway is direct C-addition forming the intermediate HC=CHCH=O followed by a 1,3-H-shift leading to H2C=CHC=O, which finally dissociates to the product C2H3 + CO. The overall reaction barrier is 13.8, 10.5, and 11.3 kcal/mol, respectively, at the three levels. The quasi-direct H-donation process to produce C2H3 + CO with barriers of 14.0, 14.1, and 14.1 kcal/mol is less competitive. Thus only at higher temperatures could the HCO + C2H2 reaction play a role. In contrast, the HOC + C2H2 reaction can barrierlessly generate C2H3 + CO via the quasi-direct H-donation mechanism proceeding via a prereactive complex with OH...C2 hydrogen bonding. This is suggestive of the potential importance of the HOC + C2H2 reaction in both combustion and interstellar processes. However, the direct C-addition channel is much less competitive. For both reactions, the possible formation of the intriguing interstellar molecules propadiene and propynal is also discussed. The present theoretical study represents the first attempt to probe the reaction mechanism between HOC and pi-systems. Future laboratory investigations on both reactions (particularly HOC + C2H2) are recommended.  相似文献   

11.
The hybrid copper–chlorine (Cu–Cl) thermo/electrochemical cycle for decomposing water into its constituents is a novel method for hydrogen production. The process involves a series of closed-loop chemical reactions. The cycle is assumed driven in an environmentally benign manner using nuclear energy. The cycle involves five steps of which three are thermally driven chemical reactions and one has an electrochemical reaction. In the present study, the electrochemical reaction, copper (Cu) production step, is described with its operational and environmental conditions, and analyzed thermodynamically. Various parametric studies are carried out on energetic and exergetic aspects of the step, considering variable reaction and reference-environment temperatures. At a reaction temperature of 45 °C, the reaction heat of the Cu production step is 140,450 kJ/kmol H2. At a constant reaction temperature of 45 °C, the exergy destruction of the step varies between 50 kJ/kmol H2 and 7000 kJ/kmol H2 when the reference-environment temperature increases from 0 °C to 30 °C. At a reaction temperature of 45 °C and a reference-environment temperature of 25 °C, the exergy efficiency of this step is 99% and decreases with increasing reference-environment and/or reaction temperatures.  相似文献   

12.
A one-pot reaction was performed to produce oxygen-free saturated hydrocarbons via the catalytic deoxygenation and hydrogenation of waste soybean oil over a hybrid catalyst (Pd/C and NiO/γ-Al2O3). We utilized in situ hydrogen generated from a reforming reaction of glycerol, a byproduct of triglyceride hydrolysis, for the one-pot reaction to produce hydrocarbons. When NiO/γ-Al2O3 (2 g) was used along with Pd/C (1 g), most of the unsaturated free fatty acids (FFAs) were hydrogenated into saturated FFAs, and the percentage of desirable hydrocarbons in the liquid product increased, in contrast to the case when only Pd/C (1 g) was used. This result means that using a hybrid catalyst is better for promoting the catalytic deoxygenation reaction than increasing the degree of loading of Pd/C, and suggests that it should be possible to decrease the amount of precious metal catalysts to be used for deoxygenation reaction.  相似文献   

13.
The kinetics of the thermal decomposition of CoOOH powder has been studied isothermally in a temperature range of 260—310°C in air. The reaction was found to proceed by the advance of a two-dimensional reaction interface. The kinetics results indicate that there are two phases in the decomposition in this temperature range: up to 280°C with an activation energy E1 = 34.75 kcal mol−1 and above 280°C with E2 = 18.91 kcal mol−1. A reaction mechanism is proposed to account for these observations.  相似文献   

14.
Density functional theory(DFT) calculations were carried out on the gold-catalyzed cyclization of alkynyl benzodioxin to 8-hydroxy-isocoumarin reaction to show the molecular mechanism of the reaction. The conclusions obtained from this work are different from those in the previous experimental study. The results show that water molecule acts as both the reactant and the proton shuttle, and promotes the reaction with gold complexes under mild conditions. The nucleophilic addition site of water on the substrate is the C(sp3) atom on the side of the substrate far away from the oxabenzene ring, resulting in C(sp3)—O bond breaking in the substrate. The formation of new C—O bond and the cleavage of C—O bond in the substrate follow a step-by-step mechanism. The oxygen in the side-product acetone comes from the contribution of water in the reaction system. The regioselectivity of the reaction originates from the polarization of alkynyl π-electrons induced by substituents.  相似文献   

15.
In this paper, the mechanisms of the intermolecular [3+2] and [1+2] cycloaddition reactions of 1,1/1,3-dipolar π-delocalized singlet vinylcarbenes, which is obtained from cyclopropenone, with an electron-deficient C═O or C═C dipolarophile, to generate five-membered ring products are first disclosed by the density functional theory (DFT). Four reaction pathways, including two concerted [3+2] cycloaddition reaction pathways and two stepwise reaction pathways (an initial [1+2] cycloaddition and then a rearrangement from the [1+2] cycloadducts to the final [3+2] cycloadducts), are investigated at the B3LYP/6-31G(d,p) level of theory. The calculated results reveal that, in contrast to the concerted C═O [3+2] cycloaddition reaction pathway, which is 7.1 kcal/mol more energetically preferred compared with its stepwise reaction pathway, the C═C dipolarophile favors undergoing [1+2] cycloaddition rather than concerted [3+2] cycloaddition (difference of 5.3 kcal/mol). The lowest free energy barrier of the C═O concerted [3+2] cycloaddition reaction pathway shows that it predominates all other reaction pathways. This observation is consistent with the finding that the C═O [3 + 2] cycloadduct is the main product under experimental conditions. In addition, natural bond orbital second-order perturbation charge analyses are carried out to explain the preferred chemoselectivity of C═O to the C═C dipolarophile and the origins of cis-stereoselectivity for C═C [1+2] cycloaddition. Solvent effects are further considered at the B3LYP/6-31G(d,p) level in the solvents CH(3)CN, DMF, THF, CH(2)Cl(2), toluene, and benzene using the PCM model. The results indicate that the relative reaction trends and the main products are insensitive to the polarity of the reaction solvent.  相似文献   

16.
This work demonstrates the outstanding performance of alloyed Au_1 Pt_1 nanoparticles on hydrogen oxidation reaction(HOR) in alkaline solution. Due to the weakened hydrogen binding energy caused by uniform incorporation of Au, the alloyed Au_1 Pt_1/C nanoparticles exhibit superior HOR activity than commercial Pt Ru/C. On the contrary, the catalytic performance of the phase-segregated Au_2 Pt_1/C and Au_1 Pt_1/C bimetallic nanoparticles in HOR is significantly worse. Moreover, Au_1 Pt_1/C shows a remarkable durability with activity dropping only 4% after 3000 CV cycles, while performance attenuation of commercial Pt Ru/C is high up to 15% under the same condition. Our results indicate that the alloyed Au_1 Pt_1/C is a promising candidate to substitute commercial Pt Ru/C for hydrogen oxidation reaction in alkaline electrolyte.  相似文献   

17.
The oxygen reaction is studied in acetonitrile solutions on various nanosystems: ХС72, 20Au/C, 20Pt/C, 15Ru/C, 20Pd/C, 20Pt10Ru/C, 20PdRu/C. It is shown that as regards their activity in the oxygen electroreduction reaction, the studied materials form the following series: Pd/C > PtRu/C > PdRu>Pt/C> Ru/C ≈ Au/C ≈ ХС72, whereas in the reaction of Li2O2 electrooxidation the activity series is different: Ru/C > PtRu/C > Pd/C > PdRu/C> ХС72 > Pt/C > Au/C. Assumptions are drawn on the nature of passivation for systems with the highest activity. The prospects of bimetallic catalysts (PtRu/C and PdRu/С) that combine the high activity in reactions of oxygen electroreduction and Li2O2 electrooxidation and also retain a considerable part of their activity on cycling are discussed. These results make it possible to judge on the possible applications of bimetallic nanosystems with bifunctional catalytic properties in lithiumoxygen fuel cells.  相似文献   

18.
To enable solid-state NMR investigations of the rhodopsin chromophore and its photointermediates, a series of 11Z-retinal isotopomers have been synthesised containing pairs of adjacent 13C labels at C9/C10, C10/C11 or C11/C12, respectively. The C9 labelled carbon atom was introduced through the Heck reaction of a 13C-labelled Weinreb acrylamide derivative, and the label at the C12 position derived from a 13C-containing ethoxy Bestmann-Ohira reagent. The 13C labels at C10 and C11 were introduced through the reaction of β-ionone with labelled triethyl phosphonoacetate.  相似文献   

19.
Ion-molecule reactions and energy-resolved mass spectrometry have been used to determine the structures of the products formed in the reaction of diacetylene radical cation with ethylene in a flowing afterglow-triple quadrupole instrument. The structure of the adduct ion, C(6)H(6)(.+), has been determined to be that of singly ionized benzene. The reaction thus presents a first example of the ability of diacetylene radical cation to undergo an aromatic ring forming reaction. The other products formed in the reaction are m/z 52, C(4)H(4)(.+), and m/z 39, C(3)H(3)(+). Isotopic labeling studies show that C(4)H(4)(.+) and C(3)H(3)(+) are formed with nearly statistical hydrogen incorporation, indicating a complex mechanism that scrambles all protons.  相似文献   

20.
Chemoselective C(sp3)? C(sp2) coupling reactions under mild reaction conditions are useful for synthesizing alkyl‐substituted alkenes having sensitive functional groups. Reported here is a visible‐light‐induced chemoselective alkenylation through a deboronation/decarboxylation sequence under neutral aqueous reaction conditions at room temperature. This reaction represents the first hypervalent‐iodine‐enabled radical decarboxylative alkenylation reaction, and a novel benziodoxole‐vinyl carboxylic acid reaction intermediate was isolated. This C(sp3)? C(sp2) coupling reaction leads to aryl‐and acyl‐substituted alkenes containing various sensitive functional groups. The excellent chemoselectivity, stable reactants, and neutral aqueous reaction conditions of the reaction suggest future biomolecule applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号