首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 66 毫秒
1.
一个充分下降的有效共轭梯度法   总被引:2,自引:0,他引:2  
对于大规模无约束优化问题,本文提出了一个充分下降的共轭梯度法公式,并建立相应的算法.该算法在不依赖于任何线搜索条件下,每步迭代都能产生一个充分下降方向.若采用标准Wolfe非精确线搜索求步长,则在常规假设条件下可获得算法良好的全局收敛性最后,对算法进行大规模数值试验,并采用Dolan和More的性能图对试验效果进行刻画,结果表明该算法是有效的.  相似文献   

2.
共轭梯度法是求解大规模无约束优化问题最有效的方法之一.对HS共轭梯度法参数公式进行改进,得到了一个新公式,并以新公式建立一个算法框架.在不依赖于任何线搜索条件下,证明了由算法框架产生的迭代方向均满足充分下降条件,且在标准Wolfe线搜索条件下证明了算法的全局收敛性.最后,对新算法进行数值测试,结果表明所改进的方法是有效的.  相似文献   

3.
本文提出了一种新的求解无约束优化问题的混合共轭梯度算法.通过构造新的β_k公式,并由此提出一个不同于传统方式的确定搜索方向的方法,使得新算法不但能自然满足下降性条件,而且这个性质与线性搜索和目标函数的凸性均无关.在较弱的条件下,我们证明了新算法的全局收敛性.数值结果亦表明了该算法的有效性.  相似文献   

4.
共轭梯度法是一类具有广泛应用的求解大规模无约束优化问题的方法. 提出了一种新的非线性共轭梯度(CG)法,理论分析显示新算法在多种线搜索条件下具有充分下降性. 进一步证明了新CG算法的全局收敛性定理. 最后,进行了大量数值实验,其结果表明与传统的几类CG方法相比,新算法具有更为高效的计算性能.  相似文献   

5.
本文研究了大规模无约束优化问题,提出了一个基于改进的FR共轭参数公式的共轭梯度法.不依赖于任何线搜索准则,算法所产生的搜索方向总是充分下降的.在标准Wolfe线搜索准则下,获得了新算法的全局收敛性.最后,对所提出的算法进行了初步数值实验,其结果表明所改进的方法是有效的.  相似文献   

6.
对无约束优化问题,本文给出了两个改进的共轭梯度法公式.在不依赖于任何线搜索条件下,由新公式所产生的算法方向均是充分下降的,且在标准Wolfe非精确线搜索条件下,算法都具有全局收敛性.最后,对新算法进行大量的比对试验,数值结果表明所提方法是有效的.  相似文献   

7.
基于著名的PRP共轭梯度方法,利用CG_DESCENT共轭梯度方法的结构,本文提出了一种求解大规模无约束最优化问题的修正PRP共轭梯度方法。该方法在每一步迭代中均能够产生一个充分下降的搜索方向,且独立于任何线搜索条件。在标准Wolfe线搜索条件下,证明了修正PRP共轭梯度方法的全局收敛性和线性收敛速度。数值结果展示了修正PRP方法对给定的测试问题是非常有效的。  相似文献   

8.
本文在文献[1]中提出了一类新共轭梯度法的基础上,给出求解无约束优化问题的两类新的非线性下降共轭梯度法,此两类方法在无任何线搜索下,能够保证在每次迭代中产生下降方向.对一般非凸函数,我们在Wolfe线搜索条件下证明了两类新方法的全局收敛性.  相似文献   

9.
基于著名的PRP共轭梯度方法,利用CG_DESCENT共轭梯度方法的结构,本文提出了一种求解大规模无约束最优化问题的修正PRP共轭梯度方法。该方法在每一步迭代中均能够产生一个充分下降的搜索方向,且独立于任何线搜索条件。在标准Wolfe线搜索条件下,证明了修正PRP共轭梯度方法的全局收敛性和线性收敛速度。数值结果展示了修正PRP方法对给定的测试问题是非常有效的。  相似文献   

10.
谱共轭梯度法是经典共轭梯度法的一种重要推广,是求解大规模无约束优化问题的有效方法之一,其中谱参数的设计尤为重要。本文通过构造一个新的谱参数且要求共轭参数满足一定条件,建立一个新的谱共轭梯度法框架。常规假设条件下,使用强Wolfe非精确线搜索准则产生步长,证明新算法框架具有充分下降性及全局收敛性。最后,基于新算法框架,选择满足条件的现有共轭参数进行数值测试,并与其他数值效果较好的算法进行比较,结果显示基于本文新算法框架所建立的算法是有效的。  相似文献   

11.
An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization   总被引:22,自引:0,他引:22  
Recently, we propose a nonlinear conjugate gradient method, which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the weak Wolfe conditions. In this paper, we will study methods related to the new nonlinear conjugate gradient method. Specifically, if the size of the scalar k with respect to the one in the new method belongs to some interval, then the corresponding methods are proved to be globally convergent; otherwise, we are able to construct a convex quadratic example showing that the methods need not converge. Numerical experiments are made for two combinations of the new method and the Hestenes–Stiefel conjugate gradient method. The initial results show that, one of the hybrid methods is especially efficient for the given test problems.  相似文献   

12.
强Wolfe条件不能保证标准CD共轭梯度法全局收敛.本文通过建立新的共轭参数,提出无约束优化问题的一个新谱共轭梯度法,该方法在精确线搜索下与标准CD共轭梯度法等价,在标准wolfe线搜索下具有下降性和全局收敛性.初步的数值实验结果表明新方法是有效的,适合于求解非线性无约束优化问题.  相似文献   

13.
In this paper, we introduce a class of nonmonotone conjugate gradient methods, which include the well-known Polak–Ribière method and Hestenes–Stiefel method as special cases. This class of nonmonotone conjugate gradient methods is proved to be globally convergent when it is applied to solve unconstrained optimization problems with convex objective functions. Numerical experiments show that the nonmonotone Polak–Ribière method and Hestenes–Stiefel method in this nonmonotone conjugate gradient class are competitive vis-à-vis their monotone counterparts.  相似文献   

14.
Memory gradient methods are used for unconstrained optimization, especially large scale problems. The first idea of memory gradient methods was proposed by Miele and Cantrell (1969) and Cragg and Levy (1969). In this paper, we present a new memory gradient method which generates a descent search direction for the objective function at every iteration. We show that our method converges globally to the solution if the Wolfe conditions are satisfied within the framework of the line search strategy. Our numerical results show that the proposed method is efficient for given standard test problems if we choose a good parameter included in the method.  相似文献   

15.
本文对求解无约束优化问题提出一类三项混合共轭梯度算法,新算法将Hestenes- stiefel算法与Dai-Yuan方法相结合,并在不需给定下降条件的情况下,证明了算法在Wolfe线搜索原则下的收敛性,数值试验亦显示出这种混合共轭梯度算法较之HS和PRP的优势.  相似文献   

16.
求解无约束优化问题的共轭梯度法,其搜索方向的下降性往往依赖于所采用的线性搜索.将提出一种修正的CD算法,其搜索方向d_k始终满足1-1/u≤(-g_k~Td_k)/(‖g_k‖~2)≤1+1/u(u1),即算法在不依赖任何线性搜索的情况下能始终产生充分下降方向.同时,当采用精确线性搜索时,该修正的CD算法就是标准的CD共轭梯度法.在适当条件下,还证明了修正的CD算法在强Wolfe线性搜索下具有全局收敛性.最后,我们给出了相应的数值结果,说明了算法是一种有效的算法.  相似文献   

17.
一族新的共轭梯度法的全局收敛性   总被引:1,自引:0,他引:1  
共轭梯度法是求解无约束优化问题的一种重要的方法,尤其适用于大规模优化问题的求解。本文提出一族新的共轭梯度法,证明了其在推广的Wolfe非精确线搜索条件下具有全局收敛性。最后对算法进行了数值试验,试验结果验证了该算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号