首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温固相法合成了Ca2 SnO4∶Tb3+绿色荧光粉.利用X射线衍射分析了Ca2 SnO4∶Tb3+物相的形成.测量了Ca2 SnO4∶Tb3+的激发和发射光谱,激发光谱由一个宽激发峰组成,研究了Tb3+浓度对样品激发光谱的影响,结果显示,随Tb3+浓度增大,宽带激发峰发生了红移.发射光谱由四个主要发射峰组成,峰值分别位于491,543,588和623 nm处,Tb3+以5 D4-7 F5(543 nm)跃迁发射最强,低掺杂浓度下,Tb3+的7 F6能级出现斯托克劈裂,劈裂峰(481 nm处)随Tb3+浓度增加,先增强然后减弱;在发光强度方面,随Tb3+浓度的增大呈现先增大后减小的趋势,当Tb3+摩尔浓度为9%时,发光强度最大,根据Dexter理论,确定了在Ca2 SnO4基质中Tb3+自身浓度猝灭机理.荧光寿命测试表明Tb3+在Ca2 SnO4基质中荧光衰减平均寿命为4.4 ms.  相似文献   

2.
Qiu GM  Xu CK  Huang C 《光谱学与光谱分析》2011,31(11):2906-2909
采用高温固相法合成了Ca2 SnO4∶Tb3+绿色荧光粉.利用X射线衍射分析了Ca2 SnO4∶Tb3+物相的形成.测量了Ca2 SnO4∶Tb3+的激发和发射光谱,激发光谱由一个宽激发峰组成,研究了Tb3+浓度对样品激发光谱的影响,结果显示,随Tb3+浓度增大,宽带激发峰发生了红移.发射光谱由四个主要发射峰组成,峰值...  相似文献   

3.
采用高温固相法在1 100 ℃下合成了Eu3+掺杂的CdxZn1-xO发光材料.采用X射线衍射对所合成样品的结构进行了表征.分析了不同浓度Cd2+的掺杂对于样品发光及激发峰位置的影响.通过对荧光光谱的测试,表明Cd2+的引入使得体系的禁带宽度变窄,并且通过Cd2+掺杂浓度的变化,可以对样品的激发光谱峰值在380~410 nm进行调制,样品的发光以520 nm处的宽带发射为主,并没有明显的Eu3+的特征发射,表明基质与Eu3+之间的能量传递并不有效.在加入Li+作为电荷补偿剂之后,出现了来自Eu3+的特征发射,相应的发射光谱的发射主峰位于609 nm.样品380~410 nm的激发峰范围覆盖了紫外LED芯片的输出波长.因此,这种荧光粉是一种可能应用在白光LED上的红色荧光粉材料.  相似文献   

4.
白光LED是指稀土掺杂的荧光粉被蓝光芯片或紫外芯片激发后获得各种室温发白光的器件。该种光致发光的实现方式是一种新型全固态照明光源,具有节能、环保及绿色照明等优点,被誉为第四代照明光源。对于现代设施农业,480~500nm之间的蓝光有一种调整植物节律的作用,对植物生长是有益的。蓝光在绿色植物的光合作用和光形态中起着重要的作用,绿色植物通过叶绿素、胡萝卜素、叶黄素和光敏素来捕获太阳光进行光合作用,适合植物生长的LED灯可提高光合作用效率,但传统的光源由于光质问题难以调节光波长,在这种情况下,需要将太阳光谱成分中380 nm以下的紫外光转换成蓝光,可提高作物光能利用率。所以,高光效、高热稳定性蓝色荧光粉已成为全光谱照明、光生态农业等领域的重要材料。蓝色荧光材料在近紫外(NUV)芯片激发的白光用发光二极管(W-LED)的制造中起重要作用。采用高温固相法制备YVO4∶Tm3+蓝色荧光粉,通过X射线衍射仪、扫描电子显微镜、荧光光谱仪等检测手段对样品的物相结构、表观形貌及发光性能进行表征分析。结果表明:通过高温固相法1 100℃下煅烧2 h可以制备出YVO...  相似文献   

5.
采用高温固相法合成了Ca2SnO4∶Tb3+绿色荧光粉。利用X射线衍射分析了Ca2SnO4∶Tb3+物相的形成。测量了Ca2SnO4∶Tb3+的激发和发射光谱,激发光谱由一个宽激发峰组成,研究了Tb3+浓度对样品激发光谱的影响,结果显示,随Tb3+浓度增大,宽带激发峰发生了红移。发射光谱由四个主要发射峰组成,峰值分别位于491,543,588和623nm处,Tb3+以5 D4—7 F5(543nm)跃迁发射最强,低掺杂浓度下,Tb3+的7 F6能级出现斯托克劈裂,劈裂峰(481nm处)随Tb3+浓度增加,先增强然后减弱;在发光强度方面,随Tb3+浓度的增大呈现先增大后减小的趋势,当Tb3+摩尔浓度为9%时,发光强度最大,根据Dexter理论,确定了在Ca2SnO4基质中Tb3+自身浓度猝灭机理。荧光寿命测试表明Tb3+在Ca2SnO4基质中荧光衰减平均寿命为4.4ms。  相似文献   

6.
邓超  林利添  汤利  陈东菊  孟建新 《发光学报》2015,36(11):1246-1251
采用高温固相法在1 000℃下煅烧6 h合成了Sc VO4∶Eu3+,Bi3+,Al3+荧光粉。使用X射线粉末衍射仪和扫描电镜对样品的结构和形貌进行了表征,采用荧光分光光度计研究了样品的发光性质。用315 nm波长激发Sc VO4∶Eu3+,Bi3+,Al3+样品时,样品在590~620 nm范围内发射强烈的橙红光,最大发射峰位于615nm。少量Al3+的掺入可以增强Sc VO4∶Eu3+,Bi3+荧光粉的发光,而掺入过量Al3+时会使Sc VO4∶Eu3+,Bi3+荧光粉的发光变弱。当Al3+在Sc VO4∶Eu3+,Bi3+中的摩尔分数达到4%时,样品的发光最强且其发光强度较未掺杂Al3+的样品提高了约30%。  相似文献   

7.
通过Li^+/La^3+同比例共掺杂策略,在氢气气氛下烧结制备了Li0.06La0.06Ba0.84Si2O5∶4%Eu^2+(LLBSO∶Eu2+)高效绿色发光荧光粉。相比于未掺杂样品Ba0.96Si2O5∶4%Eu2+(BSO∶Eu^2+),Li^+/La^3+共掺有助于单一相LLBSO∶Eu^2+荧光粉的合成,能有效降低烧结的温度和缩短合成时间。我们发现该策略节约荧光粉合成成本的同时,也可以显著提高其光学性能。相关测试表明,Li+/La3+共掺杂样品平均颗粒尺寸主要分布在1.1~2.7μm,颗粒团聚现象不明显,符合涂覆LED芯片要求。该样品可以有效地被365 nm近紫外LED芯片激发,产生位于502 nm的强的宽带绿光发射,其归属于Eu2+的5d-4f跃迁,发光强度是未掺杂样品的168%。此外,LLBSO∶Eu^2+荧光粉在150℃时发光强度仍保持在室温时的98%左右,具有良好的热稳定性。该样品CIE坐标位于绿光区(0.217,0.410)。通过绿粉/红粉和绿粉/红粉/蓝粉混粉策略,制得了色温为2918~4037 K的白色发光LED,其显色指数(Ra)均大于85,具有良好的热稳定性。实验结果表明,Li^+/La^3+共掺单一相的BSO∶Eu^2+绿色发光荧光粉是制备近紫外激发白光发射LED的优良候选荧光粉材料。  相似文献   

8.
ZnO∶Tb3+纳米晶的制备及发光性质研究   总被引:2,自引:1,他引:1  
宋国利  梁红 《光子学报》2006,35(10):1589-1592
利用溶胶-凝胶法(Sol-Gel)制备了不同浓度的ZnO∶Tb3+纳米晶,测量了样品的光致发光谱(PL)和激发谱(PLE).在ZnO宽的可见发射背景上,观察到样品在485 nm、544 nm、584 nm和620 nm附近出现了稀土Tb3+的特征发射.给出了ZnO∶Tb3+纳米晶光致发光的峰值强度随掺Tb3+浓度的变化关系,分析了稀土Tb3+的激发态5D4→7F6、5D4→7F5和5D4→7F4的发射机制,证实了稀土Tb3+的特征发射来源于稀土离子内部4f电子的f-f跃迁和ZnO基质与稀土Tb3+离子之间能量传递.  相似文献   

9.
采用高温固相法合成了适用于UVLED芯片激发的NaCaPO4∶Tb3 绿色荧光粉并对其发光性质进行了研究。该荧光粉的发射峰位于418,440,492,545,586,622nm,分别对应Tb3 的5D3→7F5、5D3→7F4、5D4→7F6、5D4→7F5、5D4→7F4、5D4→7F3能级跃迁。其中位于492,545nm的发射峰最强,样品发射很好的绿光。主要激发峰位于380~400nm之间,属于4f→4f电子跃迁吸收,与UVLED芯片的发射相匹配。考察了Tb3 掺杂浓度和Li ,Na 和K 作为电荷补偿剂对样品发光性能的影响:Tb3 的最佳掺杂浓度为10%,以Li 的补偿效果最好。NaCaPO4∶Tb3 是一种适用于白光LED的绿色荧光材料。  相似文献   

10.
采用自蔓延燃烧法结合后期热处理手段制备得到了Y3+/Pr3+共掺杂的CaGdAlO4荧光粉材料.实验结果表明:当用与Gd3+离子半径较近的Y3+来取代Gd3+时,Pr3+的光致发光强度增强,使来自Pr3+的4f-5d跃迁的吸收峰峰值位置发生了从261nm至259nm的蓝移.在确定Y3+的最优浓度为50%,Pr3+的最优浓度为0.5%时,进一步制备了Y3+/Pr3+/Yb3+共掺杂的CaGdAlO4荧光粉材料,并实现了从深紫外到近红外的量子剪裁.在Yb3+的浓度达到6%时,Yb3+位于980nm的发射峰最强.经计算Y3+/Pr3+/Yb3+共掺杂的CaGdAlO4材料的量子剪裁效率约为168%,优于Pr3+/Yb3+共掺杂的CaGdAlO4荧光粉.此外,在254nm紫外光照射下,Y3+取代Gd3+的策略在一定程度上抑制了CaGdAlO4荧光粉材料的晶格热化现象.综上,用价格更低的Y部分取代Gd,可使CaGdAlO4:Pr3+/Yb3+荧光粉制备成本降低,并进一步优化其量子剪裁性能.该研究对硅空间太阳能电池的应用开发具有实际意义.  相似文献   

11.
采用微波加热固相法合成了Mg2+、Zn2+掺杂CaWO4∶Eu3+荧光粉。利用XRD对样品的晶体结构进行表征,通过荧光分光光度仪对样品的激发光谱、发射光谱和能级寿命进行检测和分析。结果表明,Mg2+、Zn2+、Eu3+掺杂CaWO4不影响CaWO4基质的四方晶相。395nm激发下,与CaWO4∶2%Eu3+样品比较,分别掺杂0.5%的Mg2+或Zn2+的样品发光强度提高了1.3倍和2.1倍;与3%Mg2+或3%Zn2+掺杂CaWO4∶2%Eu3粉体发光比较,当Eu3+浓度增加为3%时,粉体的发光强度分别提高了7.3倍和14.8倍;与CaWO4∶3%Eu3+样品比较,3%的Mg2+或Zn2+掺杂后的样品光强分别提高了1.2倍和1.3倍。262nm比395nm激发同一样品的Eu3+的5D0能级寿命有所增加。与单掺2%Eu3+样品比较,随着Mg2+或Zn2+掺杂浓度增加,样品荧光寿命先增加后减小。同样激发波长下,与Mg2+或Zn2+掺杂CaWO4∶2%Eu3+样品荧光寿命相比,Eu3+浓度增加为3%时,样品的荧光寿命明显变短。  相似文献   

12.
采用高温固相法合成了适合近紫外光、蓝光激发的K2ZnSiO4∶Eu3+红色荧光粉,研究了该荧光粉的发光特性。XRD结果显示,所合成的荧光粉主晶相为K2ZnSiO4。样品的激发光谱由O2-→Eu3+电荷迁移带(200~350nm)和Eu3+离子的特征激发峰(350~500nm)组成,最强峰位于396nm,次强峰位于466nm。在396nm和466nm激发下,样品均呈多峰发射,分别由Eu3+离子的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,其中619nm处峰值最大。增加Eu3+离子的掺杂浓度,荧光粉的发光逐渐增强。在实验测定的浓度范围内,未出现浓度猝灭现象。不同Eu3+浓度样品的色坐标均位于色品图红光区,非常接近NTSC标准。  相似文献   

13.
采用高温固相法制备系列红色荧光粉Naz Ca1-x-2y-zBiyMoO4 ∶ Eu3+x+y (y,z=0,x=0.24,0.26,0.30,0.34,0.38; x=0.30,y=0.01,0.02,0.03,0.04,0.05,0.06,0.07,z=0; x=0.30,y=0.04,z=0.38).用X射线粉末衍射(XRD)法测试了所制样品晶相结构.采用荧光光谱仪对样品的发光性能进行了表征,结果表明:当Eu3+单掺杂量浓度x=0.30时,荧光粉(Ca0.70 MoO4∶Eu3+0.30)的发光强度最强;当Eu3+-Bi3+共掺杂量浓度y=0.03时,电荷迁移带(CTB)强度达到最强,而对于Eu3+特征发射峰,当共掺杂浓度y<0.03时,位于393 nm处的激发峰强度比464 nm强,共掺浓度y>0.03时,464 nm峰比393 nm峰强,共掺浓度为y=0.04时,393和464 nm处两峰位置强度都达到最强.作为电荷补尝剂的Na2 CO3掺入上述荧光粉中后,荧光粉激发和发射强度明显地增强.结果表明,通过调节Bi3+ /Eu3+掺杂比例可以改变位于近紫外光393 nm和蓝光区464 nm处激发光相对强度.  相似文献   

14.
毕长虹  孟庆裕 《物理学报》2013,62(19):197804-197804
采用沉淀法制备了不同Sm3+掺杂浓度的白钨矿结构CaWO4荧光粉材料. 对CaWO4:Sm3+ 材料的光致发光性质的研究结果表明, 在404 nm光照下样品可以实现色纯度较高的红光发射, 而短波紫外240 nm光照下除Sm3+的特征发射外还能观察到CaWO4自激发发射, 能够获得较强的白光; 实验发现Sm3+掺杂浓度为2%时样品的发光强度最高; 通过对实验数据的分析确定了Sm3+之间的能量传递类型为电偶极-电偶极相互作用, 并计算了能量传递的临界距离大约为2.0 nm. 关键词: 光致发光 4:Sm3+')" href="#">CaWO4:Sm3+ 荧光寿命 能量传递  相似文献   

15.
采用固相反应法制备Ca0.88TiO3:0.12Eu3+(CTE)红色荧光粉,研究了CTE荧光粉的结构与发光性能。XRD结果表明,不同退火温度下的CTE荧光粉皆为钙钛矿结构,其晶粒尺寸随退火温度的升高而增大,1 300℃退火时晶相最佳,与SEM观察的结果相一致。CTE荧光粉的激发光谱由350~500 nm范围内的一系列窄带吸收峰组成,其中的最强峰位于398 nm 附近;发射谱主要包含595 nm和616 nm两个峰,属于Eu3+离子跃迁发光。616 nm发射峰明显强于595 nm发射峰,说明Eu3+是处在无反演对称中心的格位。CTE 荧光粉的发光随着退火温度的升高而增强,1 300℃时达到最大值,这可归因于其结晶状况的改善。另外,CTE荧光粉还具有色纯度高与热稳定性好等优点,这些将使CTE成为一种潜在的用于近紫外激发的白光LED红色荧光粉材料。  相似文献   

16.
采用共沉淀法成功制备了新型黄绿色荧光粉Ca1-x WO4∶xPr3+(摩尔分数x=0.1%,0.3%,0.5%,0.7%)。通过X射线衍射(XRD)、扫描电镜(SEM)和荧光光谱等测试手段进行了结构、形貌和光致发光研究。结果表明:黄绿色荧光粉CaWO4∶Pr3+具有四角白钨矿类结构,空间群为I41/a,其表面形貌较规则、粉粒大小为5~20μm。CaWO4∶Pr3+可被487nm蓝光有效激发,其发射光谱由一系列锐谱组成,分别位于530nm(3P1→3 H5)、547nm、555nm(3P0→3 H5)、602nm(1 D2→3 H4)、618nm、637nm(3P0→3 H6)和648nm(3P0→3F2)。当摩尔分数达到0.5%时样品光致发光最强。样品的色坐标为(x=0.39,y=0.55),表明所发光为黄绿光。为了更好的理解CaWO4∶Pr3+的荧光谱,建立了包括4f2电子组态的自由离子和晶体场相互作用的91×91阶能量哈密顿量矩阵,在理论上合理地解释了Pr3+离子在CaWO4晶体中四角(S4)Ca2+晶位的光谱数据,所得理论值与实验结果吻合较好。  相似文献   

17.
Zn2+掺杂对GdTaO4:Eu3+荧光粉结构和发光性能的影响   总被引:1,自引:0,他引:1  
采用高温固相反应法制备了掺杂不同浓度Zn2 的GdTaO4:Eu0.1荧光粉,研究了Zn2 掺杂对GdTaO4:Eu3 的结晶性能,晶粒形貌和光致发光特性的影响.以X射线衍射(XRD)、扫描电子显微镜(SEM)、激发-发射谱、衰减时间谱等方法对其性能进行了表征.结果表明,Zn2 掺杂可显著提高GdTaO4:Eu3 的光致发光强度,当掺杂浓度x=0.01时,光强被提高至2.7倍,可归因于的Zn2 进入了GdTaO4:Eu3 基质晶格,产生了一定浓度的氧空位以达到电荷平衡,并导致发光中心Eu3 的晶格场发生畸变;当x=0.13时,光强提高至3.2倍,且其衰减时间被缩短至40%,可归因于Zn2 的助熔剂效果;但当x>0.13时,ZnO和GdTa7O19杂相的出现将导致发光强度减弱和衰减时间延长.另外,初步探索表明,Li2CO3和.KCl的共掺杂能进一步提高G.dTaO4:Eu0.1,Zn0.13的发光强度.  相似文献   

18.
张佳  陈贵宾 《发光学报》2014,(12):1432-1436
采用固相法合成了KSr4(BO3)3∶x Eu2+(KSB∶x Eu2+)荧光粉,通过X射线粉末衍射(XRD)、扫描电镜(SEM)及光致发光光谱分别研究了样品的晶相、形貌及发光性质。XRD研究结果表明制备的样品为正交晶系的KSr4(BO3)3单相。当Eu2+的掺杂摩尔分数x为1.5%时,在激发光谱250~550 nm范围内观察到了两个宽带激发,可归属为Eu2+的4f7-4f65d1跃迁;在400 nm激发下,发射谱呈现出一个不对称的黄色发射带,峰值位于560 nm处,可归属于Eu2+的4f65d1-4f7跃迁。因在KSr4(BO3)3化合物中存在3个Sr格位,根据其光谱特征可推测发射谱中非对称的发射带来源于多个Eu2+发光中心。  相似文献   

19.
章伟  何梦婷  乔旭升  樊先平 《发光学报》2021,42(9):1345-1364
Mn4+激活的红色荧光粉具有宽带吸收、窄带发射、色纯度高以及成本低的特点,在白光发光二极管(Light emitting diode,LED)室内照明、农业上辅助植物生长、背光显示等领域的研究备受关注.本文综述了Mn4+激活的典型LED用红色荧光粉研究进展.首先讨论了Mn4+发光的晶体场理论,归纳了近来报道的Mn4+激...  相似文献   

20.
采用水热法,通过变化水热反应时间制备出不同的BaWO4∶Eu3+样品,利用XRD和SEM分析了样品的晶体结构和表面形貌,研究了基质晶体生长取向对BaWO4中Eu3+离子特征发射的影响。实验结果表明:BaWO4∶Eu3+样品在395 nm近紫外光或464 nm蓝光激发下发射578,592,612 nm的红光,其中612 nm(5D07F2)发射强度明显高于592 nm (5D07F1)。在水热温度160 ℃的情况下,所制备的样品均为四方相,不同的水热反应时间将影响晶体在各晶向的生长速度,进而影响晶体的对称性和发光性能。水热时间为10 h时的发射强度最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号