首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A graph H is an absolute retract if for every isometric embedding h of, into a graph G an edge-preserving map g from G to H exists such that g · h is the identity map on H. A vertex v is embeddable in a graph G if G ? v is a retract of G. An absolute retract is uniquely determined by its set of embeddable vertices. We may regard this set as a metric space. We also prove that a graph (finite metric space with integral distance) can be isometrically embedded into only one smallest absolute retract (injective hull). All graphs in this paper are finite, connected, and without multiple edges.  相似文献   

2.
A graph is well covered if every maximal independent set has the same cardinality. A vertex x, in a well-covered graph G, is called extendable if G – {x} is well covered and β(G) = β(G – {x}). If G is a connected, well-covered graph containing no 4- nor 5-cycles as subgraphs and G contains an extendable vertex, then G is the disjoint union of edges and triangles together with a restricted set of edges joining extendable vertices. There are only 3 other connected, well-covered graphs of this type that do not contain an extendable vertex. Moreover, all these graphs can be recognized in polynomial time.  相似文献   

3.
A ray of a graph G is isometric if every path in R is a shortest path in G. A vertex x of G geodesically dominates a subset A of V(G) if, for every finite SV(Gx), there exists an element a of A − {x} such that the interval (set of vertices of all shortest paths) between x and a is disjoint from S. A set AV(G) is geodesically closed if it contains all vertices which geodesically dominate A. These geodesically closed sets define a topology, called the geodesic topology, on V(G). We prove that a connected graph G has no isometric rays if and only if the set V(G) endowed with the geodesic topology is compact, or equivalently if and only if the vertex set of every ray in G is geodesically dominated. We prove different invariant subgraph properties for graphs containing no isometric rays. In particular we show that every self-contraction (map which preserves or contracts the edges) of a chordal graph G stabilizes a non-empty finite simplex (complete graph) if and only if G is connected and contains no isometric rays and no infinite simplices. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 99–109, 1998  相似文献   

4.
An induced subgraph G of a graph H is a retract of H if there is an edge-preserving map f from H onto G such that f|G is the identity map on G. A median graph is a connected graph such that for any three vertices u,v and w, there exists a unique vertex x which lies simultaneously on some shortest (u,v)-, (v,w)-, and (w,u)-paths. It is shown that a graph G is a retract of some hypercube if and only if G is a median graph.  相似文献   

5.
A graph G is perfectly orderable in the sense of Chvátal if there exists a linear order on the set of vertices of G such that no induced path with vertices a, b, c, d and edges ab, bc, cd has a < b and d < c. A perfectly orderable graph G is brittle if every induced subgraph of G contains a vertex which is either endpoint or midpoint of no induced path with three edges in G. We present a new class of brittle graphs by forbidden configurations.  相似文献   

6.
A set S of vertices in a graph H=(V,E) with no isolated vertices is a paired-dominating set of H if every vertex of H is adjacent to at least one vertex in S and if the subgraph induced by S contains a perfect matching. Let G be a permutation graph and π be its corresponding permutation. In this paper we present an O(mn) time algorithm for finding a minimum cardinality paired-dominating set for a permutation graph G with n vertices and m edges.  相似文献   

7.
For a nontrivial connected graph G, let ${c: V(G)\to {{\mathbb N}}}For a nontrivial connected graph G, let c: V(G)? \mathbb N{c: V(G)\to {{\mathbb N}}} be a vertex coloring of G, where adjacent vertices may be colored the same. For a vertex v of G, let N(v) denote the set of vertices adjacent to v. The color sum σ(v) of v is the sum of the colors of the vertices in N(v). If σ(u) ≠ σ(v) for every two adjacent vertices u and v of G, then c is called a sigma coloring of G. The minimum number of colors required in a sigma coloring of a graph G is called its sigma chromatic number σ(G). The sigma chromatic number of a graph G never exceeds its chromatic number χ(G) and for every pair a, b of positive integers with ab, there exists a connected graph G with σ(G) = a and χ(G) = b. There is a connected graph G of order n with σ(G) = k for every pair k, n of positive integers with kn if and only if kn − 1. Several other results concerning sigma chromatic numbers are presented.  相似文献   

8.
For a given graph G, its line graph L(G) is defined as the graph with vertex set equal to the edge set of G in which two vertices are adjacent if and only if the corresponding edges of G have exactly one common vertex. A k-regular graph of diameter 2 on υ vertices is called a strictly Deza graph with parameters (υ, k, b, a) if it is not strongly regular and any two vertices have a or b common neighbors. We give a classification of strictly Deza line graphs.  相似文献   

9.
We write HG if every 2‐coloring of the edges of graph H contains a monochromatic copy of graph G. A graph H is Gminimal if HG, but for every proper subgraph H′ of H, H′ ? G. We define s(G) to be the minimum s such that there exists a G‐minimal graph with a vertex of degree s. We prove that s(Kk) = (k ? 1)2 and s(Ka,b) = 2 min(a,b) ? 1. We also pose several related open problems. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 167–177, 2007  相似文献   

10.
Let a and b be integers such that 0 ? a ? b. Then a graph G is called an [a, b]-graph if a ? dG(x) ? b for every x ? V(G), and an [a, b]-factor of a graph is defined to be its spanning subgraph F such that a ? dF(x) ? b for every vertex x, where dG(x) and dF(x) denote the degrees of x in G and F, respectively. If the edges of a graph can be decomposed into [a.b]-factors then we say that the graph is [2a, 2a]-factorable. We prove the following two theorems: (i) a graph G is [2a, 2b)-factorable if and only if G is a [2am,2bm]-graph for some integer m, and (ii) every [8m + 2k, 10m + 2k]-graph is [1,2]-factorable.  相似文献   

11.
A graph G homogeneously embeds in a graph H if for every vertex x of G and every vertex y of H there is an induced copy of G in H with x at y. The graph G uniformly embeds in H if for every vertex y of H there is an induced copy of G in H containing y. For positive integer k, let fk(G) (respectively, gk(G)) be the minimum order of a graph H whose edges can be k-coloured such that for each colour, G homogeneously embeds (respectively, uniformly embeds) in the graph given by V(H) and the edges of that colour. We investigate the values f2(G) and g2(G) for special classes of G, in particular when G is a star or balanced complete bipartite graph. Then we investigate fk(G) and gk(G) when k ≥ 3 and G is a complete graph.  相似文献   

12.
《Quaestiones Mathematicae》2013,36(6):749-757
Abstract

A set S of vertices is a total dominating set of a graph G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set is the total domination number γt(G). A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f (u)=0 is adjacent to at least one vertex v of G for which f (v)=2. The minimum of f (V (G))=∑u ∈ V (G) f (u) over all such functions is called the Roman domination number γR (G). We show that γt(G) ≤ γR (G) with equality if and only if γt(G)=2γ(G), where γ(G) is the domination number of G. Moreover, we characterize the extremal graphs for some graph families.  相似文献   

13.
Bruce R 《Combinatorica》1999,19(2):267-296
Dedicated to the memory of Paul Erdős We prove the following conjecture of Erdős and Hajnal: For every integer k there is an f(k) such that if for a graph G, every subgraph H of G has a stable set containing vertices, then G contains a set X of at most f(k) vertices such that GX is bipartite. This conjecture was related to me by Paul Erdős at a conference held in Annecy during July of 1996. I regret not being able to share the answer with him. Received: August 20, 1997  相似文献   

14.
A vertex v of a graph G is called groupie if the average degree tv of all neighbors of v in G is not smaller than the average degree tG of G. Every graph contains a groupie vertex; the problem of whether or not every simple graph on ≧2 vertices has at least two groupie vertices turned out to be surprisingly difficult. We present various sufficient conditions for a simple graph to contain at least two groupie vertices. Further, we investigate the function f(n) = max minv (tv/tG), where the maximum ranges over all simple graphs on n vertices, and prove that f(n) = 1/42n + o(1). The corresponding result for multigraphs is in sharp contrast with the above. We also characterize trees in which the local average degree tv is constant.  相似文献   

15.
A graph G = (V, E) is called (k, k′)‐total weight choosable if the following holds: For any total list assignment L which assigns to each vertex x a set L(x) of k real numbers, and assigns to each edge e a set L(e) of k′ real numbers, there is a mapping f: VE→? such that f(y)∈L(y) for any yVEand for any two adjacent vertices x, x′, . We conjecture that every graph is (2, 2)‐total weight choosable and every graph without isolated edges is (1, 3)‐total weight choosable. It follows from results in [7] that complete graphs, complete bipartite graphs, trees other than K2 are (1, 3)‐total weight choosable. Also a graph G obtained from an arbitrary graph H by subdividing each edge with at least three vertices is (1, 3)‐total weight choosable. This article proves that complete graphs, trees, generalized theta graphs are (2, 2)‐total weight choosable. We also prove that for any graph H, a graph G obtained from H by subdividing each edge with at least two vertices is (2, 2)‐total weight choosable as well as (1, 3)‐total weight choosable. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:198‐212, 2011  相似文献   

16.
Let G be a graph with vertex set V(G) and edge set E(G) and let g and f be two integer-valued functions defined on V(G) such that 2k − 2 ≤ f(x) for all xV(G). Let H be a subgraph of G with mk edges. In this paper it is proved that every (mg + m − 1,mfm + 1)-graph G has (g,f)-factorizations randomly k-orthogonal to H and shown that the result is best possible.  相似文献   

17.
A set S of vertices of a graph G = (V, E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdgt(G){{\rm sd}_{\gamma_t}(G)} is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper, we prove that sdgt(G) £ 2gt(G)-1{{\rm sd}_{\gamma_t}(G)\leq 2\gamma_t(G)-1} for every simple connected graph G of order n ≥ 3.  相似文献   

18.
The graph G is a covering of the graph H if there exists a (projection) map p from the vertex set of G to the vertex set of H which induces a one-to-one correspondence between the vertices adjacent to v in G and the vertices adjacent to p(v) in H, for every vertex v of G. We show that for any two finite regular graphs G and H of the same degree, there exists a finite graph K that is simultaneously a covering both of G and H. The proof uses only Hall's theorem on 1-factors in regular bipartite graphs.  相似文献   

19.
In 1950s, Tutte introduced the theory of nowhere-zero flows as a tool to investigate the coloring problem of maps, together with his most fascinating conjectures on nowhere-zero flows. These have been extended by Jaeger et al. in 1992 to group connectivity, the nonhomogeneous form of nowhere-zero flows. Let G be a 2-edge-connected undirected graph, A be an (additive) abelian group and A* = A − {0}. The graph G is A-connected if G has an orientation D(G) such that for every map b: V (G) ↦ A satisfying Σ vV(G) b(v) = 0, there is a function f: E(G) ↦ A* such that for each vertex vV (G), the total amount of f-values on the edges directed out from v minus the total amount of f-values on the edges directed into v is equal to b(v). The group coloring of a graph arises from the dual concept of group connectivity. There have been lots of investigations on these subjects. This survey provides a summary of researches on group connectivity and group colorings of graphs. It contains the following sections.
1.  Nowhere-zero Flows and Group Connectivity of Graphs  相似文献   

20.
For two vertices u and v of a connected graph G, the set I(u,v) consists of all those vertices lying on a u-v geodesic in G. For a set S of vertices of G, the union of all sets I(u,v) for u, v S is denoted by I(S). A set S is a convex set if I(S) = S. The convexity number con(G) of G is the maximum cardinality of a proper convex set of G. A convex set S in G with |S| = con(G) is called a maximum convex set. A subset T of a maximum convex set S of a connected graph G is called a forcing subset for S if S is the unique maximum convex set containing T. The forcing convexity number f(S, con) of S is the minimum cardinality among the forcing subsets for S, and the forcing convexity number f(G, con) of G is the minimum forcing convexity number among all maximum convex sets of G. The forcing convexity numbers of several classes of graphs are presented, including complete bipartite graphs, trees, and cycles. For every graph G, f(G, con) con(G). It is shown that every pair a, b of integers with 0 a b and b is realizable as the forcing convexity number and convexity number, respectively, of some connected graph. The forcing convexity number of the Cartesian product of H × K 2 for a nontrivial connected graph H is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号