首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Learning from imbalanced data, where the number of observations in one class is significantly larger than the ones in the other class, has gained considerable attention in the machine learning community. Assuming the difficulty in predicting each class is similar, most standard classifiers will tend to predict the majority class well. This study applies tornado data that are highly imbalanced, as they are rare events. The severe weather data used herein have thunderstorm circulations (mesocyclones) that produce tornadoes in approximately 6.7 % of the total number of observations. However, since tornadoes are high impact weather events, it is important to predict the minority class with high accuracy. In this study, we apply support vector machines (SVMs) and logistic regression with and without a midpoint threshold adjustment on the probabilistic outputs, random forest, and rotation forest for tornado prediction. Feature selection with SVM-recursive feature elimination was also performed to identify the most important features or variables for predicting tornadoes. The results showed that the threshold adjustment on SVMs provided better performance compared to other classifiers.  相似文献   

2.
Streaming data are relevant to finance, computer science, and engineering while they are becoming increasingly important to medicine and biology. Continuous time Bayesian network classifiers are designed for analyzing multivariate streaming data when time duration of event matters. Structural and parametric learning for the class of continuous time Bayesian network classifiers are considered in the case where complete data is available. Conditional log-likelihood scoring is developed for structural learning on continuous time Bayesian network classifiers. Performance of continuous time Bayesian network classifiers learned when combining conditional log-likelihood scoring and Bayesian parameter estimation are compared with that achieved by continuous time Bayesian network classifiers when learning is based on marginal log-likelihood scoring and to that achieved by dynamic Bayesian network classifiers. Classifiers are compared in terms of accuracy and computation time. Comparison is based on numerical experiments where synthetic and real data are used. Results show that conditional log-likelihood scoring combined with Bayesian parameter estimation outperforms marginal log-likelihood scoring. Conditional log-likelihood scoring becomes even more effective when the amount of available data is limited. Continuous time Bayesian network classifiers outperform in terms of computation time and accuracy dynamic Bayesian network on synthetic and real data sets.  相似文献   

3.
One issue in data classification problems is to find an optimal subset of instances to train a classifier. Training sets that represent well the characteristics of each class have better chances to build a successful predictor. There are cases where data are redundant or take large amounts of computing time in the learning process. To overcome this issue, instance selection techniques have been proposed. These techniques remove examples from the data set so that classifiers are built faster and, in some cases, with better accuracy. Some of these techniques are based on nearest neighbors, ordered removal, random sampling and evolutionary methods. The weaknesses of these methods generally involve lack of accuracy, overfitting, lack of robustness when the data set size increases and high complexity. This work proposes a simple and fast immune-inspired suppressive algorithm for instance selection, called SeleSup. According to self-regulation mechanisms, those cells unable to neutralize danger tend to disappear from the organism. Therefore, by analogy, data not relevant to the learning of a classifier are eliminated from the training process. The proposed method was compared with three important instance selection algorithms on a number of data sets. The experiments showed that our mechanism substantially reduces the data set size and is accurate and robust, specially on larger data sets.  相似文献   

4.
The receiver operating characteristics (ROC) analysis has gained increasing popularity for analyzing the performance of classifiers. In particular, maximizing the convex hull of a set of classifiers in the ROC space, namely ROCCH maximization, is becoming an increasingly important problem. In this work, a new convex hull-based evolutionary multi-objective algorithm named ETriCM is proposed for evolving neural networks with respect to ROCCH maximization. Specially, convex hull-based sorting with convex hull of individual minima (CH-CHIM-sorting) and extreme area extraction selection (EAE-selection) are proposed as a novel selection operator. Empirical studies on 7 high-dimensional and imbalanced datasets show that ETriCM outperforms various state-of-the-art algorithms including convex hull-based evolutionary multi-objective algorithm (CH-EMOA) and non-dominated sorting genetic algorithm II (NSGA-II).  相似文献   

5.
The selection of the optimal ensembles of classifiers in multiple-classifier selection technique is un-decidable in many cases and it is potentially subjected to a trial-and-error search. This paper introduces a quantitative meta-learning approach based on neural network and rough set theory in the selection of the best predictive model. This approach depends directly on the characteristic, meta-features of the input data sets. The employed meta-features are the degree of discreteness and the distribution of the features in the input data set, the fuzziness of these features related to the target class labels and finally the correlation and covariance between the different features. The experimental work that consider these criteria are applied on twenty nine data sets using different classification techniques including support vector machine, decision tables and Bayesian believe model. The measures of these criteria and the best result classification technique are used to build a meta data set. The role of the neural network is to perform a black-box prediction of the optimal, best fitting, classification technique. The role of the rough set theory is the generation of the decision rules that controls this prediction approach. Finally, formal concept analysis is applied for the visualization of the generated rules.  相似文献   

6.
Chance constrained uncertain classification via robust optimization   总被引:1,自引:0,他引:1  
This paper studies the problem of constructing robust classifiers when the training is plagued with uncertainty. The problem is posed as a Chance-Constrained Program (CCP) which ensures that the uncertain data points are classified correctly with high probability. Unfortunately such a CCP turns out to be intractable. The key novelty is in employing Bernstein bounding schemes to relax the CCP as a convex second order cone program whose solution is guaranteed to satisfy the probabilistic constraint. Prior to this work, only the Chebyshev based relaxations were exploited in learning algorithms. Bernstein bounds employ richer partial information and hence can be far less conservative than Chebyshev bounds. Due to this efficient modeling of uncertainty, the resulting classifiers achieve higher classification margins and hence better generalization. Methodologies for classifying uncertain test data points and error measures for evaluating classifiers robust to uncertain data are discussed. Experimental results on synthetic and real-world datasets show that the proposed classifiers are better equipped to handle data uncertainty and outperform state-of-the-art in many cases.  相似文献   

7.
Supervised classification is an important part of corporate data mining to support decision making in customer-centric planning tasks. The paper proposes a hierarchical reference model for support vector machine based classification within this discipline. The approach balances the conflicting goals of transparent yet accurate models and compares favourably to alternative classifiers in a large-scale empirical evaluation in real-world customer relationship management applications. Recent advances in support vector machine oriented research are incorporated to approach feature, instance and model selection in a unified framework.  相似文献   

8.
This research intends to develop the classifiers for dealing with binary classification problems with interval data whose difficulty to be tackled has been well recognized, regardless of the field. The proposed classifiers involve using the ideas and techniques of both quantiles and data envelopment analysis (DEA), and are thus referred to as quantile–DEA classifiers. That is, the classifiers first use the concept of quantiles to generate a desired number of exact-data sets from a training-data set comprising interval data. Then, the classifiers adopt the concept and technique of an intersection-form production possibility set in the DEA framework to construct acceptance domains with each corresponding to an exact-data set and thus a quantile. Here, an intersection-form acceptance domain is actually represented by a linear inequality system, which enables the quantile–DEA classifiers to efficiently discover the groups to which large volumes of data belong. In addition, the quantile feature enables the proposed classifiers not only to help reveal patterns, but also to tell the user the value or significance of these patterns.  相似文献   

9.
10.
11.
In this paper, we present two classification approaches based on Rough Sets (RS) that are able to learn decision rules from uncertain data. We assume that the uncertainty exists only in the decision attribute values of the Decision Table (DT) and is represented by the belief functions. The first technique, named Belief Rough Set Classifier (BRSC), is based only on the basic concepts of the Rough Sets (RS). The second, called Belief Rough Set Classifier, is more sophisticated. It is based on Generalization Distribution Table (BRSC-GDT), which is a hybridization of the Generalization Distribution Table and the Rough Sets (GDT-RS). The two classifiers aim at simplifying the Uncertain Decision Table (UDT) in order to generate significant decision rules for classification process. Furthermore, to improve the time complexity of the construction procedure of the two classifiers, we apply a heuristic method of attribute selection based on rough sets. To evaluate the performance of each classification approach, we carry experiments on a number of standard real-world databases by artificially introducing uncertainty in the decision attribute values. In addition, we test our classifiers on a naturally uncertain web usage database. We compare our belief rough set classifiers with traditional classification methods only for the certain case. Besides, we compare the results relative to the uncertain case with those given by another similar classifier, called the Belief Decision Tree (BDT), which also deals with uncertain decision attribute values.  相似文献   

12.
The availability of abundant data posts a challenge to integrate static customer data and longitudinal behavioral data to improve performance in customer churn prediction. Usually, longitudinal behavioral data are transformed into static data before being included in a prediction model. In this study, a framework with ensemble techniques is presented for customer churn prediction directly using longitudinal behavioral data. A novel approach called the hierarchical multiple kernel support vector machine (H-MK-SVM) is formulated. A three phase training algorithm for the H-MK-SVM is developed, implemented and tested. The H-MK-SVM constructs a classification function by estimating the coefficients of both static and longitudinal behavioral variables in the training process without transformation of the longitudinal behavioral data. The training process of the H-MK-SVM is also a feature selection and time subsequence selection process because the sparse non-zero coefficients correspond to the variables selected. Computational experiments using three real-world databases were conducted. Computational results using multiple criteria measuring performance show that the H-MK-SVM directly using longitudinal behavioral data performs better than currently available classifiers.  相似文献   

13.
Decision-tree algorithm provides one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Over the years, additional methodologies have been investigated and proposed to deal with continuous or multi-valued data, and with missing or noisy features. Recently, with the growing popularity of fuzzy representation, some researchers have proposed to utilize fuzzy representation in decision trees to deal with similar situations. This paper presents a survey of current methods for Fuzzy Decision Tree (FDT) designment and the various existing issues. After considering potential advantages of FDT classifiers over traditional decision tree classifiers, we discuss the subjects of FDT including attribute selection criteria, inference for decision assignment and stopping criteria. To be best of our knowledge, this is the first overview of fuzzy decision tree classifier.  相似文献   

14.
In machine learning problems, the availability of several classifiers trained on different data or features makes the combination of pattern classifiers of great interest. To combine distinct sources of information, it is necessary to represent the outputs of classifiers in a common space via a transformation called calibration. The most classical way is to use class membership probabilities. However, using a single probability measure may be insufficient to model the uncertainty induced by the calibration step, especially in the case of few training data. In this paper, we extend classical probabilistic calibration methods to the evidential framework. Experimental results from the calibration of SVM classifiers show the interest of using belief functions in classification problems.  相似文献   

15.
Rather than induce classification rules by sophisticated algorithms, we introduce a fully interactive approach for building classifiers from large multivariate datasets based on the table lens, a multidimensional visualization technique, and appropriate interaction capabilities. Constructing classifiers is an interaction with a feedback loop. The domain knowledge and human perception can be profitably included. In our approach, both continuous and categorical attributes are processed uniformly, and continuous attributes are partitioned on the fly. Our performance evaluation with data sets from the UCI repository demonstrates that this interactive approach is useful to easily build understandable classifiers with high prediction accuracy and no required a prior knowledge about the datasets.  相似文献   

16.
Non-parametric density estimation is an important technique in probabilistic modeling and reasoning with uncertainty. We present a method for learning mixtures of polynomials (MoPs) approximations of one-dimensional and multidimensional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. We compute maximum likelihood estimators of the mixing coefficients of the linear combination. The Bayesian information criterion is used as the score function to select the order of the polynomials and the number of pieces of the MoP. The method is evaluated in two ways. First, we test the approximation fitting. We sample artificial datasets from known one-dimensional and multidimensional densities and learn MoP approximations from the datasets. The quality of the approximations is analyzed according to different criteria, and the new proposal is compared with MoPs learned with Lagrange interpolation and mixtures of truncated basis functions. Second, the proposed method is used as a non-parametric density estimation technique in Bayesian classifiers. Two of the most widely studied Bayesian classifiers, i.e., the naive Bayes and tree-augmented naive Bayes classifiers, are implemented and compared. Results on real datasets show that the non-parametric Bayesian classifiers using MoPs are comparable to the kernel density-based Bayesian classifiers. We provide a free R package implementing the proposed methods.  相似文献   

17.
18.
One way to tackle brain computer interfaces is to consider event related potentials in electroencephalography, like the well established P300 phenomenon. In this paper a multiple classifier approach to discover these events in the bioelectrical signal and with them whether or not a subject has recognized a particular pattern, is employed. Dealing with noisy data as well as heavily imbalanced target class distributions are among the difficulties encountered. Our approach utilizes partitions of electrodes to create robust and meaningful individual classifiers, which are then subsequently combined using decision fusion. Furthermore, a classifier selection approach using genetic algorithms is evaluated and used for optimization. The proposed approach utilizing information fusion shows promising results (over 0.8 area under the ROC curve).  相似文献   

19.
When combining classifiers in the Dempster-Shafer framework, Dempster’s rule is generally used. However, this rule assumes the classifiers to be independent. This paper investigates the use of other operators for combining non independent classifiers, including the cautious rule and, more generally, t-norm based rules with behavior ranging between Dempster’s rule and the cautious rule. Two strategies are investigated for learning an optimal combination scheme, based on a parameterized family of t-norms. The first one learns a single rule by minimizing an error criterion. The second strategy is a two-step procedure, in which groups of classifiers with similar outputs are first identified using a clustering algorithm. Then, within- and between-cluster rules are determined by minimizing an error criterion. Experiments with various synthetic and real data sets demonstrate the effectiveness of both the single rule and two-step strategies. Overall, optimizing a single t-norm based rule yields better results than using a fixed rule, including Dempster’s rule, and the two-step strategy brings further improvements.  相似文献   

20.
Fuzzy ordered classifiers were used to assign fuzzy labels to river sites expressing their suitability as a habitat for a certain macroinvertebrate taxon, given up to three abiotic properties of the considered river site. The models were built using expert knowledge and evaluated on data collected in the Province of Overijssel in the Netherlands. Apart from a performance measure for crisp classifiers common in the aquatic ecology domain, the percentage of correctly classified instances (% CCI), two performance measures for fuzzy (ordered) classifiers are introduced in this paper: the percentage of correctly fuzzy classified instances (% CFCI) and the average deviation (AD). Furthermore, results of an interpretability-preserving genetic optimization of the linguistic terms, applying once binary encoding and once real encoding, are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号