首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A flexible Bayesian periodic autoregressive model is used for the prediction of quarterly and monthly time series data. As the unknown autoregressive lag order, the occurrence of structural breaks and their respective break dates are common sources of uncertainty these are treated as random quantities within the Bayesian framework. Since no analytical expressions for the corresponding marginal posterior predictive distributions exist a Markov Chain Monte Carlo approach based on data augmentation is proposed. Its performance is demonstrated in Monte Carlo experiments. Instead of resorting to a model selection approach by choosing a particular candidate model for prediction, a forecasting approach based on Bayesian model averaging is used in order to account for model uncertainty and to improve forecasting accuracy. For model diagnosis a Bayesian sign test is introduced to compare the predictive accuracy of different forecasting models in terms of statistical significance. In an empirical application, using monthly unemployment rates of Germany, the performance of the model averaging prediction approach is compared to those of model selected Bayesian and classical (non)periodic time series models.  相似文献   

2.
This article suggests a method for variable and transformation selection based on posterior probabilities. Our approach allows for consideration of all possible combinations of untransformed and transformed predictors along with transformed and untransformed versions of the response. To transform the predictors in the model, we use a change-point model, or “change-point transformation,” which can yield more interpretable models and transformations than the standard Box–Tidwell approach. We also address the problem of model uncertainty in the selection of models. By averaging over models, we account for the uncertainty inherent in inference based on a single model chosen from the set of models under consideration. We use a Markov chain Monte Carlo model composition (MC3) method which allows us to average over linear regression models when the space of models under consideration is very large. This considers the selection of variables and transformations at the same time. In an example, we show that model averaging improves predictive performance as compared with any single model that might reasonably be selected, both in terms of overall predictive score and of the coverage of prediction intervals. Software to apply the proposed methodology is available via StatLib.  相似文献   

3.
Bayesian analysis of threshold autoregressive (TAR) model with various possible thresholds is considered. A method of Bayesian stochastic search selection is introduced to identify a threshold-dependent sequence with highest probability. All model parameters are computed by a hybrid Markov chain Monte Carlo method, which combines Metropolis–Hastings algorithm and Gibbs sampler. The main innovation of the method introduced here is to estimate the TAR model without assuming the fixed number of threshold values, thus is more flexible and useful. Simulation experiments and a real data example lend further support to the proposed approach.  相似文献   

4.
Numerous multivariate time series admit weak vector autoregressive moving-average (VARMA) representations, in which the errors are uncorrelated but not necessarily independent nor martingale differences. These models are called weak VARMA by opposition to the standard VARMA models, also called strong VARMA models, in which the error terms are supposed to be independent and identically distributed (iid). This article considers the problem of order selection of the weak VARMA models by using the information criteria. It is shown that the use of the standard information criteria are often not justified when the iid assumption on the noise is relaxed. As a consequence, we propose the modified versions of the Schwarz or Bayesian information criterion and of the Hannan and Quinn criterion for identifying the orders of weak VARMA models. Monte Carlo experiments show that the proposed modified criteria estimate the model orders more accurately than the standard ones. An illustrative application using the squared daily returns of financial series is presented.  相似文献   

5.
Model averaging is a good alternative to model selection, which can deal with the uncertainty from model selection process and make full use of the information from various candidate models. However, most of the existing model averaging criteria do not consider the influence of outliers on the estimation procedures. The purpose of this paper is to develop a robust model averaging approach based on the local outlier factor (LOF) algorithm which can downweight the outliers in the covariates. Asymptotic optimality of the proposed robust model averaging estimator is derived under some regularity conditions. Further, we prove the consistency of the LOF-based weight estimator tending to the theoretically optimal weight vector. Numerical studies including Monte Carlo simulations and a real data example are provided to illustrate our proposed methodology.  相似文献   

6.
Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.  相似文献   

7.
This article proposes a new Bayesian approach to prediction on continuous covariates. The Bayesian partition model constructs arbitrarily complex regression and classification surfaces by splitting the covariate space into an unknown number of disjoint regions. Within each region the data are assumed to be exchangeable and come from some simple distribution. Using conjugate priors, the marginal likelihoods of the models can be obtained analytically for any proposed partitioning of the space where the number and location of the regions is assumed unknown a priori. Markov chain Monte Carlo simulation techniques are used to obtain predictive distributions at the design points by averaging across posterior samples of partitions.  相似文献   

8.
The threshold autoregressive model with generalized autoregressive conditionally heteroskedastic (GARCH) specification is a popular nonlinear model that captures the well‐known asymmetric phenomena in financial market data. The switching mechanisms of hysteretic autoregressive GARCH models are different from threshold autoregressive model with GARCH as regime switching may be delayed when the hysteresis variable lies in a hysteresis zone. This paper conducts a Bayesian model comparison among competing models by designing an adaptive Markov chain Monte Carlo sampling scheme. We illustrate the performance of three kinds of criteria by comparing models with fat‐tailed and/or skewed errors: deviance information criteria, Bayesian predictive information, and an asymptotic version of Bayesian predictive information. A simulation study highlights the properties of the three Bayesian criteria and the accuracy as well as their favorable performance as model selection tools. We demonstrate the proposed method in an empirical study of 12 international stock markets, providing evidence to strongly support for both models with skew fat‐tailed innovations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
It is increasingly common to be faced with longitudinal or multi-level data sets that have large numbers of predictors and/or a large sample size. Current methods of fitting and inference for mixed effects models tend to perform poorly in such settings. When there are many variables, it is appealing to allow uncertainty in subset selection and to obtain a sparse characterization of the data. Bayesian methods are available to address these goals using Markov chain Monte Carlo (MCMC), but MCMC is very computationally expensive and can be infeasible in large p and/or large n problems. As a fast approximate Bayes solution, we recommend a novel approximation to the posterior relying on variational methods. Variational methods are used to approximate the posterior of the parameters in a decomposition of the variance components, with priors chosen to obtain a sparse solution that allows selection of random effects. The method is evaluated through a simulation study, and applied to an epidemiological application.  相似文献   

10.
Multiple Classifier Systems (MCSs) allow evaluation of the uncertainty of classification outcomes that is of crucial importance for safety critical applications. The uncertainty of classification is determined by a trade-off between the amount of data available for training, the classifier diversity and the required performance. The interpretability of MCSs can also give useful information for experts responsible for making reliable classifications. For this reason Decision Trees (DTs) seem to be attractive classification models for experts. The required diversity of MCSs exploiting such classification models can be achieved by using two techniques, the Bayesian model averaging and the randomised DT ensemble. Both techniques have revealed promising results when applied to real-world problems. In this paper we experimentally compare the classification uncertainty of the Bayesian model averaging with a restarting strategy and the randomised DT ensemble on a synthetic dataset and some domain problems commonly used in the machine learning community. To make the Bayesian DT averaging feasible, we use a Markov Chain Monte Carlo technique. The classification uncertainty is evaluated within an Uncertainty Envelope technique dealing with the class posterior distribution and a given confidence probability. Exploring a full posterior distribution, this technique produces realistic estimates which can be easily interpreted in statistical terms. In our experiments we found out that the Bayesian DTs are superior to the randomised DT ensembles within the Uncertainty Envelope technique.  相似文献   

11.
A threshold stochastic volatility (SV) model is used for capturing time-varying volatilities and nonlinearity. Two adaptive Markov chain Monte Carlo (MCMC) methods of model selection are designed for the selection of threshold variables for this family of SV models. The first method is the direct estimation which approximates the model posterior probabilities of competing models. Using parallel MCMC sampling to estimate these probabilities, the best threshold variable is selected with the highest posterior model probability. The second method is to use the deviance information criterion to compare among these competing models and select the best one. Simulation results lead us to conclude that for large samples the posterior model probability approximation method can give an accurate approximation of the posterior probability in Bayesian model selection. The method delivers a powerful and sharp model selection tool. An empirical study of five Asian stock markets provides strong support for the threshold variable which is formulated as a weighted average of important variables.  相似文献   

12.
In this paper, we discuss Bayesian joint quantile regression of mixed effects models with censored responses and errors in covariates simultaneously using Markov Chain Monte Carlo method. Under the assumption of asymmetric Laplace error distribution, we establish a Bayesian hierarchical model and derive the posterior distributions of all unknown parameters based on Gibbs sampling algorithm. Three cases including multivariate normal distribution and other two heavy-tailed distributions are considered for fitting random effects of the mixed effects models. Finally, some Monte Carlo simulations are performed and the proposed procedure is illustrated by analyzing a group of AIDS clinical data set.  相似文献   

13.
Variational Bayesian methods aim to address some of the weaknesses (computation time, storage costs and convergence monitoring) of mainstream Markov chain Monte Carlo based inference at the cost of a biased but more tractable approximation to the posterior distribution. We investigate the performance of variational approximations in the context of the mixed logit model, which is one of the most used models for discrete choice data. A typical treatment using the variational Bayesian methodology is hindered by the fact that the expectation of the so called log-sum-exponential function has no explicit expression. Therefore additional approximations are required to maintain tractability. In this paper we compare seven different possible bounds or approximations. We found that quadratic bounds are not sufficiently accurate. A recently proposed non-quadratic bound did perform well. We also found that the Taylor series approximation used in a previous study of variational Bayes for mixed logit models is only accurate for specific settings. Our proposed approximation based on quasi Monte Carlo sampling performed consistently well across all simulation settings while remaining computationally tractable.  相似文献   

14.
A current challenge for many Bayesian analyses is determining when to terminate high-dimensional Markov chain Monte Carlo simulations. To this end, we propose using an automated sequential stopping procedure that terminates the simulation when the computational uncertainty is small relative to the posterior uncertainty. Further, we show this stopping rule is equivalent to stopping when the effective sample size is sufficiently large. Such a stopping rule has previously been shown to work well in settings with posteriors of moderate dimension. In this article, we illustrate its utility in high-dimensional simulations while overcoming some current computational issues. As examples, we consider two complex Bayesian analyses on spatially and temporally correlated datasets. The first involves a dynamic space-time model on weather station data and the second a spatial variable selection model on fMRI brain imaging data. Our results show the sequential stopping rule is easy to implement, provides uncertainty estimates, and performs well in high-dimensional settings. Supplementary materials for this article are available online.  相似文献   

15.
Dynamically rescaled Hamiltonian Monte Carlo is introduced as a computationally fast and easily implemented method for performing full Bayesian analysis in hierarchical statistical models. The method relies on introducing a modified parameterization so that the reparameterized target distribution has close to constant scaling properties, and thus is easily sampled using standard (Euclidian metric) Hamiltonian Monte Carlo. Provided that the parameterizations of the conditional distributions specifying the hierarchical model are “constant information parameterizations” (CIPs), the relation between the modified- and original parameterization is bijective, explicitly computed, and admit exploitation of sparsity in the numerical linear algebra involved. CIPs for a large catalogue of statistical models are presented, and from the catalogue, it is clear that many CIPs are currently routinely used in statistical computing. A relation between the proposed methodology and a class of explicitly integrated Riemann manifold Hamiltonian Monte Carlo methods is discussed. The methodology is illustrated on several example models, including a model for inflation rates with multiple levels of nonlinearly dependent latent variables. Supplementary materials for this article are available online.  相似文献   

16.
We employ a statistical criterion (out-of-sample hit rate) and a financial market measure (portfolio performance) to compare the forecasting accuracy of three model selection approaches: Bayesian information criterion (BIC), model averaging, and model mixing. While the more recent approaches of model averaging and model mixing surpass the Bayesian information criterion in their out-of-sample hit rates, the predicted portfolios from these new approaches do not significantly outperform the portfolio obtained via the BIC subset selection method.  相似文献   

17.
In this article we study penalized regression splines (P-splines), which are low-order basis splines with a penalty to avoid undersmoothing. Such P-splines are typically not spatially adaptive, and hence can have trouble when functions are varying rapidly. Our approach is to model the penalty parameter inherent in the P-spline method as a heteroscedastic regression function. We develop a full Bayesian hierarchical structure to do this and use Markov chain Monte Carlo techniques for drawing random samples from the posterior for inference. The advantage of using a Bayesian approach to P-splines is that it allows for simultaneous estimation of the smooth functions and the underlying penalty curve in addition to providing uncertainty intervals of the estimated curve. The Bayesian credible intervals obtained for the estimated curve are shown to have pointwise coverage probabilities close to nominal. The method is extended to additive models with simultaneous spline-based penalty functions for the unknown functions. In simulations, the approach achieves very competitive performance with the current best frequentist P-spline method in terms of frequentist mean squared error and coverage probabilities of the credible intervals, and performs better than some of the other Bayesian methods.  相似文献   

18.
This paper introduces a new and computationally efficient Markov chain Monte Carlo (MCMC) estimation algorithm for the Bayesian analysis of zero, one, and zero and one inflated beta regression models. The algorithm is computationally efficient in the sense that it has low MCMC autocorrelations and computational time. A simulation study shows that the proposed algorithm outperforms the slice sampling and random walk Metropolis–Hastings algorithms in both small and large sample settings. An empirical illustration on a loss given default banking model demonstrates the usefulness of the proposed algorithm.  相似文献   

19.
We focus on Bayesian variable selection in regression models. One challenge is to search the huge model space adequately, while identifying high posterior probability regions. In the past decades, the main focus has been on the use of Markov chain Monte Carlo (MCMC) algorithms for these purposes. In this article, we propose a new computational approach based on sequential Monte Carlo (SMC), which we refer to as particle stochastic search (PSS). We illustrate PSS through applications to linear regression and probit models.  相似文献   

20.
In this paper, a Bayesian hierarchical model for variable selection and estimation in the context of binary quantile regression is proposed. Existing approaches to variable selection in a binary classification context are sensitive to outliers, heteroskedasticity or other anomalies of the latent response. The method proposed in this study overcomes these problems in an attractive and straightforward way. A Laplace likelihood and Laplace priors for the regression parameters are proposed and estimated with Bayesian Markov Chain Monte Carlo. The resulting model is equivalent to the frequentist lasso procedure. A conceptional result is that by doing so, the binary regression model is moved from a Gaussian to a full Laplacian framework without sacrificing much computational efficiency. In addition, an efficient Gibbs sampler to estimate the model parameters is proposed that is superior to the Metropolis algorithm that is used in previous studies on Bayesian binary quantile regression. Both the simulation studies and the real data analysis indicate that the proposed method performs well in comparison to the other methods. Moreover, as the base model is binary quantile regression, a much more detailed insight in the effects of the covariates is provided by the approach. An implementation of the lasso procedure for binary quantile regression models is available in the R-package bayesQR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号