首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
微流控芯片测定单细胞内化学组分的进展   总被引:1,自引:0,他引:1  
细胞是生命的基本单元。由于细胞的个体差异,传统分析群体细胞的方法难以得到单细胞的重要信息。准确可靠地测定单细胞内化学组分的含量能大大提高从正常细胞中辨别不正常细胞的能力,为进一步研究和发展生物化学、医学和临床检验等领域奠定基础。近年来,用微流控芯片进行单细胞分析已引起广泛的兴趣。微流控芯片可以集成单细胞进样、溶膜、电泳分离胞内化学组分和高灵敏度测定等一系列操作步骤,为分析单细胞内的化学组分提供了新的技术平台。本文主要综述了近年来微流控芯片测定单细胞内化学组分的进展。重点在于利用电渗流、压力结合电渗流和激光镊子等技术操控单细胞在微流控芯片上完成单细胞进样、溶膜、细胞内化学组分的电泳分离和高灵敏度测定等一系列操作步骤。对在微流控芯片上的衍生技术也做了较为详细的阐述。  相似文献   

2.
Szekely L  Freitag R 《Electrophoresis》2005,26(10):1928-1939
In this paper, we investigate the phenomenon of electroosmosis as a means to propel a mobile phase, in particular in view of an application in microfluidic systems, which are characterized by significantly smaller volumes of the reservoirs and the separation channels compared to conventional instrumentation. In the microfluidic chip, pH changes due to water electrolysis quickly showed an effect on the electroosmotic flow (EOF), which could be counteracted by either regularly exchanging or buffering the mobile phase. Surface treatment was of no effect in regard to EOF stabilization in empty channels but may have an influence in channels filled with a charged monolith. In fused-silica capillaries the EOF was generally found to decrease from 'naked' to surface-treated to monolith-filled capillaries. The EOF tended to be higher when an organic solvent (acetonitrile) was added to the mobile phase and could be further increased by substituting the water with equal amounts of methanol. In addition, the hydrostatic pressure exerted by the EOF was investigated. In a microfluidic chip with empty (cross-)channels such an effect could be responsible for a redirection of the flow. In capillaries partially filled with a noncharged (non-EOF-generating) monolith, a linear relationship could be established between the EOF created in the empty section of the capillary (apparent mobility) and the length of the monolith (backpressure). In capillaries partially filled with a charged (EOF-producing) monolith, flow inhomogeneities must be expected as a consequence of a superimposition of hydrodynamic pressure and EOF as mobile phase driving force.  相似文献   

3.
A difficulty with the design and operation of an electrokinetically operated DNA hybridization microfluidic chip is the opposite direction of the electroosmotic flow and electrophoretic mobility of the oligonucleotides. This makes it difficult to simultaneously deliver targets and an appropriate hybridization buffer simultaneously to the probe sites. In this work we investigate the possibility of coating the inner walls of the microfluidic system with hexadimentrine bromide (polybrene, PB) and other cationic polymers in order to reverse the direction of electroosmotic flow so that it acts in the same direction as the electrophoretic transport of the oligonucleotides. The results indicated that the electroosmotic flow (EOF) in channels that were coated with the polymer could be reversed in 1× TBE buffer or 1× SSC buffer. Under these conditions, the DNA and EOF move in the same direction, and the flow can be used to deliver DNA to an area for selective hybridization within the channel. The effects of coating the surface of a nucleic acid microarray with polybrene were also studied to assess non-selective adsorption and stability. The polybrene coating significantly reduced the extent of non-selective adsorption of oligonucleotides in comparison to adsorption onto a glass surface, and the coating did not alter the extent of hybridization. The results suggest that use of the coating makes it possible to achieve semi-quantitative manipulation of nucleic acid oligomers for delivery to an integrated microarray or biosensor.  相似文献   

4.
Electroosmotic flow (EOF) is widely used to manipulate solutions in capillaries and microfluidic devices, and more recently in the nanotubes of a carbon nanotube membrane. In all of these applications it is important to control both the rate and direction of EOF through the system, independently of the electric field that drives EOF. For this reason, there has been considerable recent effort devoted to developing ways of modulating the rate and direction of EOF. We describe here a new method, and we use the carbon nanotube membrane (CNM) system to demonstrate this method. This new method entails coating the inside walls of the carbon nanotubes within the CNM with redox-active polymer films. The redox polymer, poly(vinylferrocene), can be reversibly electrochemically switched between an electrical neutral and a polycationic form. This provides a way for controlling both the magnitude and the sign of the surface charge on the nanotube walls, which in turn allows for control of both the rate and direction of EOF through the CNM.  相似文献   

5.
SK Kim  WK Moon  JY Park  H Jung 《The Analyst》2012,137(17):4062-4068
Leukocyte adhesion to adhesion molecules on endothelial cells is important in immune function, cancer metastasis and inflammation. This cell-cell binding is mediated via cell adhesion molecules such as E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) found on endothelial cells. Because these adhesion molecules on endothelial cells vary significantly across several disease conditions such as autoimmune diseases, inflammation or cancer metastasis, investigations of therapeutic agents that down-regulate leukocyte-endothelial interactions have been based on in vitro models using endothelial cell lines. Here we report a new model, an inflammatory mimetic microfluidic chip, which emulates leukocyte binding to cell adhesion molecules (CAM) by controlling the types and ratio of adhesion molecules. In our model, E-selectin was essential for the synergic binding of Jurkat T cells. Immunosuppressive drugs, such as tacrolimus (FK506) and cyclosporine A (CsA), were used to inhibit T cell interactions under the physiologic model of T cell migration at a ratio of 5?:?4.3?:?3.9 (E-selectin?:?ICAM-1?:?VCAM-1). Our results support the potential usefulness of the inflammatory mimetic microfluidic chip as a T cell adhesion assay tool with modified adhesion molecules for applications such as immunosuppressive drug screening. The inflammatory mimetic microfluidic chip can also be used as a biosensor in clinical diagnostics, drug efficacy tests and high throughput drug screening due to the dynamic monitoring capability of the microfluidic chip.  相似文献   

6.
A wide variety of physical and biological factors are involved in determining the success of electrofusion procedures. The optimal conditions for the fusion and survival of mouse two-cell embryos have been determined by manipulating the electric field parameters, medium composition, degree of cell-cell contact and the relationship between current flow and membrane orientation. The experiments demonstrate that the events which initiate embryonic cell fusion are dependent upon a closely defined electric field strength and associated pulse duration. We show further that high cell fusion rates are the product of an inverse relationship between dc field strength and pulse duration and the initiation of pore formation by electric field application is insufficient to induce successful fusion unless accompanied by appropriate post-pulse medium and adequate membrane contact. Manipulation of the direction of current flow, membrane orientation and degree of cell-cell contact have shown that the initiation of pore formation occurs across the entire surface of the cell membrane.  相似文献   

7.
Electrokinetic flow of a suspension of erythrocytes (red blood cells, RBCs) in 20 num cylindrical fused-silica capillaries is examined in the present work. Flow direction anomalies are observed experimentally and tentatively explained by the development of a pH gradient between the cathode well and the anode well due to electrolysis reactions at the electrodes. This pH gradient alters the local zeta potentials of both the capillary and the RBC and thus the local electroendosmotic liquid flow (EOF) velocities and RBC electrophoretic (EP) velocities. The two velocities are opposite in direction but with EOF dominating such that the RBC moves toward the cathode, opposite to the anode migration observed in bulk conditions. The opposing zeta potentials also lead to RBC aggregation at the anode end for low fields less than 25 V/cm. As the electroendosmotic velocity decreases at the anode end due to decreasing pH, pressure-driven back flow develops to oppose the original EOF at the remaining portions of the capillary ensuring constant fluid flux. When the anode EOF velocity is smaller in magnitude than the EP velocity, reversal of blood cell transport is observed after a short transient time in which a pH gradient forms. RBC velocities and pH dependencies on electric field and MgCl(2) concentration are presented along with data showing the accumulation of charge separation across the capillary. Also, a short-term solution to the pH gradient formation is presented that could help thwart development of pH gradients in micro-devices at lower voltages.  相似文献   

8.
微流控芯片与质谱联用为细胞研究提供了一个很好的研究平台.质谱的高灵敏度和对化合物独特的鉴别能力可以从复杂的化学信息背景中筛选识别出微量目标物,是细胞分析理想的检测手段.本文重点综述了近年来基于微流控芯片-质谱联用技术的细胞研究进展,从芯片-电喷雾质谱(ESI-MS)接口技术、集成化的样品前处理技术、细胞的药物代谢和细胞相互作用研究及基质辅助激光解吸电离质谱(MALDI-MS)的细胞分析应用等方面总结了最新的方法和技术发展.并展望了芯片-质谱联用新技术应用于细胞分析的可能性.  相似文献   

9.
Current monitoring method for measurement of EOF in microchannels involves measurement of time-varying current while an electrolyte displaces another electrolyte having different conductivity due to EOF. The basic premise of the current monitoring method is that an axial gradient in conductivity of a binary electrolyte in a microchannel advects only due to EOF. In the current work, using theory and experiments, we show that this assumption is not valid for low concentration electrolytes and narrow microchannels wherein surface conduction is comparable with bulk conduction. We show that in presence of surface conduction, a gradient in conductivity of binary electrolyte not only advects with EOF but also undergoes electromigration. This electromigration phenomenon is nonlinear and is characterized by propagation of shock and rarefaction waves in ion concentrations. Consequently, in presence of surface conduction, the current–time relationships for forward and reverse displacement in the current monitoring method are asymmetric and the displacement time is also direction dependent. To quantify the effect of surface conduction, we present analytical expressions for current–time relationship in the regime when surface conduction is comparable to bulk conduction. We validate these relations with experimental data by performing a series of current monitoring experiments in a glass microfluidic chip at low electrolyte concentrations. The experimentally validated analytical expressions for current–time relationships presented in this work can be used to correctly estimate EOF using the current monitoring method when surface conduction is not negligible.  相似文献   

10.
The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.  相似文献   

11.
Mammalian cells cultured on 2D surfaces in microfluidic channels are increasingly used in drug development and biological research applications. These systems would have more biological or clinical relevance if the cells exhibit 3D phenotypes similar to the cells in vivo. We have developed a microfluidic channel based system that allows cells to be perfusion-cultured in 3D by supporting them with adequate 3D cell-cell and cell-matrix interactions. The maximal cell-cell interaction was achieved by perfusion-seeding cells through an array of micropillars; and 3D cell-matrix interactions were achieved by a polyelectrolyte complex coacervation process to form a thin layer of matrix conforming to the 3D cell shapes. Carcinoma cell lines (HepG2, MCF7), primary differentiated (hepatocytes) and primary progenitor cells (bone marrow mesenchymal stem cells) were perfusion-cultured for 72 hours to 1 week in the microfluidic channel, which preserved their 3D cyto-architecture and cell-specific functions or differentiation competence. This transparent 3D microfluidic channel-based cell culture system also allows direct optical monitoring of cellular events for a wide range of applications.  相似文献   

12.
Normal cardiac function is maintained through dynamic interactions of cardiac cells with each other and with the extracellular matrix. These interactions are important for remodeling during cardiac growth and pathophysiological conditions. However, the precise mechanisms of these interactions remain unclear. In this study we examined the importance of desmoplakin (DSP) in cardiac cell-cell interactions. Cell-cell communication in the heart requires the formation and preservation of cell contacts by cell adhesion junctions called desmosome-like structures. A major protein component of this complex is DSP, which plays a role in linking the cytoskeletal network to the plasma membrane. Our laboratory previously generated a polyclonal antibody (1611) against the detergent soluble fraction of cardiac fibroblast plasma membrane. In attempting to define which proteins 1611 recognizes, we performed two-dimensional electrophoresis and identified DSP as one of the major proteins recognized by 1611. Immunoprecipitation studies demonstrated that 1611 was able to directly pulldown DSP. We also demonstrate that 1611 and anti-DSP antibodies co-localize in whole heart sections. Finally, using a three-dimensional in vitro cell-cell interaction assay, we demonstrate that 1611 can inhibit cell-cell interactions. These data indicate that DSP is an important protein for cell-cell interactions and affects a variety of cellular functions, including cytokine secretion.  相似文献   

13.
We present a microfluidic platform allowing dielectrophoresis‐assisted formation of cell aggregates of controlled size and composition under flow conditions. When specific experimental conditions are met, negative dielectrophoresis allows efficient concentration of cells towards electric field minima and subsequent aggregation. This bottom‐up assembly strategy offers several advantages with respect to the targeted application: first, dielectrophoresis offers precise control of spatial cell organization, which can be adjusted by optimizing electrode design. Then, it could contribute to accelerate the establishment of cell‐cell interactions by favoring close contact between neighboring cells. The trapping geometry of our chip is composed of eight electrodes arranged in a circle. Several parameters have been tested in simulations to find the best configurations for trapping in flow. Those configurations have been tested experimentally with both polystyrene beads and human embryonic kidney cells. The final design and experimental setup have been optimized to trap cells and release the created aggregates on demand.  相似文献   

14.
The determination of glucose in microfluidic chips made of glass or PMMA was used as a model for the combination of an enzymatic reaction with the separation of compounds. It was based on the enzymatic oxidation of glucose and the amperometric detection of hydrogen peroxide. Real samples frequently contain compounds, such as ascorbic acid, which may interfere with quantitative glucose determinations. Thus, electrophoretic separation of specific from unspecific signals was envisaged by applying electric fields which are also used to control the flow of liquid via electroosmotic effects. Surface charge densities of the capillaries influence the electroosmotic flow (EOF). They are dependent on the chip material and on the adsorption of components from the background electrolyte. Reversal of the EOF after addition of cetyltrimethylammonium bromide (CTAB) and an increase in EOF after addition of sodium dodecylsulfate (SDS) were observed at lower surfactant concentrations with the PMMA chips rather than with the glass chips. For both chip materials these concentrations were below the critical micelle concentration. Effective separation of H2O2 and ascorbic acid was achieved with low CTAB concentrations, which lead to a reduction, but not to a reversal of the EOF. Reversal of the EOF by higher CTAB concentrations or the increase in cathodic EOF by SDS accelerated ascorbic acid transportation and reduced the differences in migration times. Thus, for the specific determination of glucose, glucose oxidase was added together with low CTAB concentrations to the background electrolyte. This avoided interference from ascorbic acid, and data obtained from the analysis of fruit juices showed a good correlation to data obtained from a reference method.  相似文献   

15.
16.
A miniaturized analytical system for separating and detecting inorganic explosive residues, based on the coupling of a micromachined capillary electrophoresis (CE) chip with a contactless conductivity detector is described. The low electroosmotic flow (EOF) of the poly(methylmethacrylate) (PMMA) chip material facilitates the rapid switching between analyses of cations and anions using the same microchannel and run buffer (and without an EOF modifier), and hence offers rapid (< 1 min) measurement of seven explosive-related cations and anions. Experimental parameters relevant to the separation and detection processes have been optimized. Addition of a 18-crown-6 ether modifier has been used for separating the peaks of co-migrating potassium and ammonium ions. The ionic-explosive microchip system combines the distinct advantages of contactless conductivity detection with the attractive features of plastic CE microchips. The new microsystem offers great promise for monitoring explosive-related ions at the sample source, with significant advantages of speed/warning, efficiency, cost, or sample size.  相似文献   

17.
The integration of complete analyses systems "on chip" is one of the great potentials of microfabricated devices. In this study we present a new pressure-driven microfabricated fluorescent-activated cell sorter chip with advanced functional integration. Using this sorter, fluorescent latex beads are sorted from chicken red blood cells, achieving substantial enrichments at a sample throughput of 12000 cells s(-1). As a part of the sorter chip, we have developed a monolithically integrated single step coaxial flow compound for hydrodynamic focusing of samples in flow cytometry and cell sorting. The structure is simple, and can easily be microfabricated and integrated with other microfluidic components. We have designed an integrated chamber on the chip for holding and culturing of the sorted cells. By integrating this chamber, the risk of losing cells during cell handling processes is eliminated. Furthermore, we have also developed integrated optics for cell detection. Our new design contributes to the ongoing efforts for building a fully integrated micro cell sorting and analysing system.  相似文献   

18.
In this work, we theoretically explore the characteristics of electroosmostic flow (EOF) in a microcavity with nonuniform surface charges. It is well known that a uniformly charged EOF does not give rise to flow separation because of its irrotational nature, as opposed to the classical problem of viscous flow past a cavity. However, if the cavity walls bear nonuniform surface charges, then the similitude between electric and flow fields breaks down, leading to the generation of vorticity in the cavity. Because this vorticity must necessarily diffuse into the exterior region that possesses a zero vorticity set by a uniform EOF, a new flow structure emerges. Assuming Stokes flow, we employ a boundary element method to explore how a nonuniform charge distribution along the cavity surface affects the flow structure. The results show that the stream can be susceptible to flow separation and exhibits a variety of flow structures, depending on the distributions of zeta potentials and the aspect ratio of the cavity. The interactions between patterned EOF vortices and Moffatt eddies are further demonstrated for deep cavities. This work not only has implications for electrokinetic flow induced by surface imperfections but also provides optimal strategies for achieving effective mixing in microgrooves.  相似文献   

19.
Hargis AD  Alarie JP  Ramsey JM 《Electrophoresis》2011,32(22):3172-3179
A microfluidic device capable of rapidly analyzing cells in a high-throughput manner using electrical cell lysis is further characterized. In the experiments performed, cell lysis events were studied using an electron multiplying charge coupled device camera with high frame rate (>100 fps) data collection. It was found that, with this microfluidic design, the path that a cell follows through the electric field affects the amount of lysate injected into the analysis channel. Elimination of variable flow paths through the electric field was achieved by coating the analysis channel with a polyamine compound to reverse the electroosmotic flow (EOF). EOF reversal forced the cells to take the same path through the electric field. The improved control of the cell trajectory will reduce device-imposed bias on the analysis and maximizes the amount of lysate injected into the analysis channel for each cell, resulting in improved analyte detection capabilities.  相似文献   

20.
Field amplified sample stacking (FASS) uses differential electrophoretic velocity of analyte ions in the high‐conductivity background electrolyte zone and low conductivity sample zone for increasing the analyte concentration. The stacking rate of analyte ions in FASS is limited by molecular diffusion and convective dispersion due to nonuniform electroosmotic flow (EOF). We present a theoretical scaling analysis of stacking dynamics in FASS and its validation with a large set of on‐chip sample stacking experiments and numerical simulations. Through scaling analysis, we have identified two stacking regimes that are relevant for on‐chip FASS, depending upon whether the broadening of the stacked peak is dominated by axial diffusion or convective dispersion. We show that these two regimes are characterized by distinct length and time scales, based on which we obtain simplified nondimensional relations for the temporal growth of peak concentration and width in FASS. We first verify the theoretical scaling behavior in diffusion‐ and convection‐dominated regimes using numerical simulations. Thereafter, we show that the experimental data of temporal growth of peak concentration and width at varying electric fields, conductivity gradients, and EOF exhibit the theoretically predicted scaling behavior. The scaling behavior described in this work provides insights into the effect of varying experimental parameters, such as electric field, conductivity gradient, electroosmotic mobility, and electrophoretic mobility of the analyte on the dynamics of on‐chip FASS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号