首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
Given a Lie group G with a bi-invariant metric and a compact Lie subgroup K, Bittencourt and Ripoll used the homogeneous structure of quotient spaces to define a Gauss map ${\mathcal{N}:M^{n}\rightarrow{\mathbb{S}}}$ on any hypersupersurface ${M^{n}\looparrowright G/K}$ , where ${{\mathbb{S}}}$ is the unit sphere of the Lie algebra of G. It is proved in Bittencourt and Ripoll (Pacific J Math 224:45–64, 2006) that M n having constant mean curvature (CMC) is equivalent to ${\mathcal{N}}$ being harmonic, a generalization of a Ruh–Vilms theorem for submanifolds in the Euclidean space. In particular, when n = 2, the induced quadratic differential ${\mathcal{Q}_{\mathcal{N}}:=(\mathcal{N}^{\ast}g)^{2,0}}$ is holomorphic on CMC surfaces of G/K. In this paper, we take ${G/K={\mathbb{S}}^{2}\times{\mathbb{R}}}$ and compare ${\mathcal{Q}_{\mathcal{N}}}$ with the Abresch–Rosenberg differential ${\mathcal{Q}}$ , also holomorphic for CMC surfaces. It is proved that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ , after showing that ${\mathcal{N}}$ is the twisted normal given by (1.5) herein. Then we define the twisted normal for surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ and prove that ${\mathcal{Q}=\mathcal{Q}_{\mathcal{N}}}$ as well. Within the unified model for the two product spaces, we compute the tension field of ${\mathcal{N}}$ and extend to surfaces in ${{\mathbb{H}}^{2}\times{\mathbb{R}}}$ the equivalence between the CMC property and the harmonicity of ${\mathcal{N}.}$   相似文献   

2.
In this paper, we study surfaces in Lorentzian product spaces ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ . We classify constant angle spacelike and timelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ . Moreover, complete classifications of spacelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ and timelike surfaces in ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ with a canonical principal direction are obtained. Finally, a new characterization of the catenoid of the 3rd kind is established, as the only minimal timelike surface with a canonical principal direction in Minkowski 3–space.  相似文献   

3.
We prove that if a polynomial vector field on ${\mathbb{C}^2}$ has a proper and non-algebraic trajectory analytically isomorphic to ${\mathbb{C}^{\ast}}$ all its trajectories are proper, and except at most one which is contained in an algebraic curve of type ${\mathbb{C}}$ all of them are of type ${\mathbb{C}^{\ast}}$ . As corollary we obtain an analytic version of Lin?CZa?denberg Theorem for polynomial foliations.  相似文献   

4.
In this work, we investigate linear codes over the ring ${\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}$ . We first analyze the structure of the ring and then define linear codes over this ring which turns out to be a ring that is not finite chain or principal ideal contrary to the rings that have hitherto been studied in coding theory. Lee weights and Gray maps for these codes are defined by extending on those introduced in works such as Betsumiya et al. (Discret Math 275:43–65, 2004) and Dougherty et al. (IEEE Trans Inf 45:32–45, 1999). We then characterize the ${\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}$ -linearity of binary codes under the Gray map and give a main class of binary codes as an example of ${\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}$ -linear codes. The duals and the complete weight enumerators for ${\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}$ -linear codes are also defined after which MacWilliams-like identities for complete and Lee weight enumerators as well as for the ideal decompositions of linear codes over ${\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}$ are obtained.  相似文献   

5.
In this paper we classify the complete rotational special Weingarten surfaces in ${\mathbb{S}^2 \times \mathbb{R}}$ and ${\mathbb{H}^2 \times \mathbb{R}}$ ; i.e. rotational surfaces in ${\mathbb{S}^2 \times \mathbb{R}}$ and ${\mathbb{H}^2 \times \mathbb{R}}$ whose mean curvature H and extrinsic curvature K e satisfy H = f(H 2 ? K e ), for some function ${f \in \mathcal{C}^1([0,+\infty))}$ such that f(0) = 0 and 4x(f′(x))2 < 1 for any x ≥ 0. Furthermore we show the existence of non-complete examples of such surfaces.  相似文献   

6.
Let ${\mathbb{Q}^3}$ be the moduli space of oriented circles in the three dimensional unit sphere ${\mathbb{S}^3}$ . Given a natural complex structure such space becomes a three dimensional complex manifold, with a M?bius invariant Hermitian metric h of type (2, 1). Up to M?bius transformations, all geodesics with respect to the Lorentz metric g = Re(h) on ${\mathbb{Q}^3}$ are determined to form a one-parameter family of circles on a helicoid in a space form ${\mathbb{R}^3, \mathbb{H}^3}$ or ${\mathbb{S}^{3}}$ , resp. We show also that any two oriented circles in ${\mathbb{S}^3}$ are connected by countably infinitely many geodesics in ${\mathbb{Q}^3}$ .  相似文献   

7.
We construct a simply connected complete bounded mean curvature one surface in the hyperbolic 3-space ${\mathcal {H}^3}$ . Such a surface in ${\mathcal {H}^3}$ can be lifted as a complete bounded null curve in ${\rm {SL}(2,\mathbb {C})}$ . Using a transformation between null curves in ${\mathbb {C}^3}$ and null curves in ${\rm {SL}(2,\mathbb {C})}$ , we are able to produce the first examples of complete bounded null curves in ${\mathbb {C}^3}$ . As an application, we can show the existence of a complete bounded minimal surface in ${\mathbb {R}^3}$ whose conjugate minimal surface is also bounded. Moreover, we can show the existence of a complete bounded immersed complex submanifold in ${\mathbb {C}^2}$ .  相似文献   

8.
Let ${\Omega=\Omega_{1}\times\cdots\times\Omega_{n}\subset\mathbb{C}^{n}}$ , where ${\Omega_{j}\subset\mathbb{C}}$ is a bounded domain with smooth boundary. We study the solution operator to the ${\overline\partial}$ -Neumann problem for (0,1)-forms on Ω. In particular, we construct singular functions which describe the singular behavior of the solution. As a corollary our results carry over to the ${\overline\partial}$ -Neumann problem for (0,q)-forms. Despite the singularities, we show that the canonical solution to the ${\overline\partial}$ -equation, obtained from the Neumann operator, does not exhibit singularities when given smooth data.  相似文献   

9.
We prove that for any open Riemann surface ${\mathcal{N}}$ , natural number N ≥ 3, non-constant harmonic map ${h:\mathcal{N} \to \mathbb{R}}$ N?2 and holomorphic 2-form ${\mathfrak{H}}$ on ${\mathcal{N}}$ , there exists a weakly complete harmonic map ${X=(X_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ with Hopf differential ${\mathfrak{H}}$ and ${(X_j)_{j=3,\ldots,{\sc N}}=h.}$ In particular, there exists a complete conformal minimal immersion ${Y=(Y_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ such that ${(Y_j)_{j=3,\ldots,{\sc N}}=h}$ . As some consequences of these results (1) there exist complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of ${\mathbb{CP}^{{\sc N}-1}}$ in general position. (2) There exist complete non-proper embedded minimal surfaces in ${\mathbb{R}^{\sc N},}$ ${\forall\,{\sc N} >3 .}$   相似文献   

10.
Isometric embeddings of $\mathbb{Z}_{p^n+1}$ into the Hamming space ( $\mathbb{F}_{p}^{p^n},w$ ) have played a fundamental role in recent constructions of non-linear codes. The codes thus obtained are very good codes, but their rate is limited by the rate of the first-order generalized Reed–Muller code—hence, when n is not very small, these embeddings lead to the construction of low-rate codes. A natural question is whether there are embeddings with higher rates than the known ones. In this paper, we provide a partial answer to this question by establishing a lower bound on the order of a symmetry of ( $\mathbb{F}_{p}^{N},w$ ).  相似文献   

11.
For a sequence $\underline{u}=(u_n)_{n\in \mathbb{N }}$ of integers, let $t_{\underline{u}}(\mathbb{T })$ be the group of all topologically $\underline{u}$ -torsion elements of the circle group $\mathbb{T }:=\mathbb{R }/\mathbb{Z }$ . We show that for any $s\in ]0,1[$ and $m\in \{0,+\infty \}$ there exists $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has Hausdorff dimension $s$ and $s$ -dimensional Hausdorff measure equal to $m$ (no other values for $m$ are possible). More generally, for dimension functions $f,g$ with $f(t)\prec g(t), f(t)\prec \!\!\!\prec t$ and $g(t)\prec \!\!\!\prec t$ we find $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has at the same time infinite $f$ -measure and null $g$ -measure.  相似文献   

12.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

13.
Li and Wang (Manuscr Math 122(1):73–95, 2007) presented Laguerre geometry for hypersurfaces in ${\mathbb{R}^{n}}$ and calculated the first variational formula of the Laguerre functional by using Laguerre invariants. In this paper we present the second variational formula for Laguerre minimal hypersurfaces. As an application of this variational formula we give the standard examples of Laguerre minimal hypersurfaces in ${\mathbb{R}^{n}}$ and show that they are stable Laguerre minimal hypersurfaces. Using this second variational formula we can prove that a surface with vanishing mean curvature in ${\mathbb{R}^{3}_{0}}$ is Laguerre equivalent to a stable Laguerre minimal surface in ${\mathbb{R}^{3}}$ under the Laguerre embedding. This example of stable Laguerre minimal surface in ${\mathbb{R}^{3}}$ is different from the one Palmer gave in (Rend Mat Appl 19(2):281–293, 1999).  相似文献   

14.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

15.
In this paper, we obtain sufficient and necessary conditions for a simply connected Riemannian manifold (M n , g) to be isometrically immersed into ${\mathbb{S}^m \times \mathbb{R}}$ and ${\mathbb{H}^m \times \mathbb{R}}$ .  相似文献   

16.
We consider the groups ${\mathrm{Diff }}_\mathcal{B }(\mathbb{R }^n)$ , ${\mathrm{Diff }}_{H^\infty }(\mathbb{R }^n)$ , and ${\mathrm{Diff }}_{\mathcal{S }}(\mathbb{R }^n)$ of smooth diffeomorphisms on $\mathbb{R }^n$ which differ from the identity by a function which is in either $\mathcal{B }$ (bounded in all derivatives), $H^\infty = \bigcap _{k\ge 0}H^k$ , or $\mathcal{S }$ (rapidly decreasing). We show that all these groups are smooth regular Lie groups.  相似文献   

17.
Suppose that n is even. Let ${\mathbb{F}_2}$ denote the two-element field and ${\mathbb{Z}}$ the set of integers. Bent functions can be defined as ± 1-valued functions on ${\mathbb{F}_2^n}$ with ± 1-valued Fourier transform. More generally we call a mapping f on ${\mathbb{F}_2^n}$ a ${\mathbb{Z}}$ -bent function if both f and its Fourier transform ${\widehat{f}}$ are integer-valued. ${\mathbb{Z}}$ -bent functions f are separated into different levels, depending on the size of the maximal absolute value attained by f and ${\widehat{f}}$ . It is shown how ${\mathbb{Z}}$ -bent functions of lower level can be built up recursively by gluing together ${\mathbb{Z}}$ -bent functions of higher level. This recursion comes down at level zero, containing the usual bent functions. In the present paper we start to study bent functions in the framework of ${\mathbb{Z}}$ -bent functions and give some guidelines for further research.  相似文献   

18.
In this work, we prove that if C is a free ${\mathbb{Z}_4}$ -module of rank k in ${\mathbb{Z}_4^n}$ , and ${j\in \mathbb{Z}}$ and e ≥ 1, then the number of codewords in C with Lee weight congruent to j modulo 2 e is divisible by ${2^{\left \lfloor \large{\frac{k-2^{e-2}}{2^{e-2}}} \right \rfloor}}$ . We prove this result by introducing a lemma and applying the lemma in one of the theorems proved by Wilson. The method used is different than the one used in our previous work on Lee weight enumerators in which more general results were obtained. Moreover, Wilson’s methods are used to prove that the results obtained are sharp by calculating the power of 2 that divides the number of codewords in the trivial code ${\mathbb{Z}_{4}^k}$ with Lee weight congruent to j modulo 2 e .  相似文献   

19.
Let ${\beta(\mathbb{N})}$ denote the Stone–?ech compactification of the set ${\mathbb{N}}$ of natural numbers (with the discrete topology), and let ${\mathbb{N}^\ast}$ denote the remainder ${\beta(\mathbb{N})-\mathbb{N}}$ . We show that, interpreting modal diamond as the closure in a topological space, the modal logic of ${\mathbb{N}^\ast}$ is S4 and that the modal logic of ${\beta(\mathbb{N})}$ is S4.1.2.  相似文献   

20.
Bijective operators conserving the indefinite scalar product on a Krein space ${(\mathcal{K}, J)}$ are called J-unitary. Such an operator T is defined to be ${\mathbb{S}^1}$ -Fredholm if T?z 1 is Fredholm for all z on the unit circle ${\mathbb{S}^1}$ , and essentially ${\mathbb{S}^1}$ -gapped if there is only discrete spectrum on ${\mathbb{S}^1}$ . For paths in the ${\mathbb{S}^1}$ -Fredholm operators an intersection index similar to the Conley–Zehnder index is introduced. The strict subclass of essentially ${\mathbb{S}^1}$ -gapped operators has a countable number of components which can be distinguished by a homotopy invariant given by the signature of J restricted to the eigenspace of all eigenvalues on ${\mathbb{S}^1}$ . These concepts are illustrated by several examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号