首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Fukui function is considered as the diagonal element of the Fukui matrix in position space, where the Fukui matrix is the derivative of the one particle density matrix (1DM) with respect to the number of electrons. Diagonalization of the Fukui matrix, expressed in an orthogonal orbital basis, explains why regions in space with negative Fukui functions exist. Using a test set of molecules, electron correlation is found to have a remarkable effect on the eigenvalues of the Fukui matrix. The Fukui matrices at the independent electron model level are mathematically proven to always have an eigenvalue equal to exactly unity while the rest of the eigenvalues possibly differ from zero but sum to zero. The loss of idempotency of the 1DM at correlated levels of theory causes the loss of these properties. The influence of electron correlation is examined in detail and the frontier molecular orbital concept is extended to correlated levels of theory by defining it as the eigenvector of the Fukui matrix with the largest eigenvalue. The effect of degeneracy on the Fukui matrix is examined in detail, revealing that this is another way by which the unity eigenvalue and perfect pairing of eigenvalues can disappear.  相似文献   

2.
The Fukui function is often used in its atom‐condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms‐in‐molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld‐I atoms‐in‐molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld‐I approach to obtain atom‐ and bond‐condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms‐in‐molecule approach shows low correlation between the two partitioning schemes.  相似文献   

3.
Ab initio and density-functional theory calculations for a family of substituted acetylenes show that removing electrons from these molecules causes the electron density along the C-C bond to increase. This result contradicts the predictions of simple frontier molecular orbital theory, but it is easily explained using the nucleophilic Fukui function-provided that one is willing to allow for the Fukui function to be negative. Negative Fukui functions emerge as key indicators of redox-induced electron rearrangements, where oxidation of an entire molecule (acetylene) leads to reduction of a specific region of the molecule (along the bond axis, between the carbon atoms). Remarkably, further oxidization of these substituted acetylenes (one can remove as many as four electrons!) causes the electron density along the C-C bond to increase even more. This work provides substantial evidence that the molecular Fukui function is sometimes negative and reveals that this is due to orbital relaxation.  相似文献   

4.
Consider the construction of an operator from the sum of two component operators. Weyl’s inequality gives a lower bound to an eigenvalue of the constructed operator using a single eigenvalue from each of the component operators. Using such minimal information gives a poor bound, however, and when the eigenvectors that correspond to the said eigenvalues of the component operators are known, Weyl’s inequality can be significantly improved by considering the overlap of the two eigenvectors. This improvement can sometimes be further improved when several eigenvectors of each component operator are known so that the overlap of sub-eigenspaces are considered instead. The improvement is best when there is minimal overlap and Weyl’s inequality returns when the overlap is complete. An example with the hydrogen molecular ion is presented which illustrates the superiority over Weyl’s inequality when eigenvector or sub-eigenspace information is utilized.  相似文献   

5.
A new condensed form of the Fukui function, the natural orbital Fukui function (NOFF), is proposed and derived from natural bond orbital occupancy. It is defined as the change in natural bond orbital occupancy upon electronic perturbation (electron addition to, or depletion from, a molecular system). Applying NOFF to a series of cycloaddition reactions (e.g., [4 + 2] and [2 + 1] cycloadditions) illustrates the effectiveness of the concept in interpreting bond breakage and formation mechanisms.  相似文献   

6.
Two approaches are investigated for modeling electron densities of temporary anions in density functional theory (DFT). Both rely on an artificial binding of the excess electron, in one case by a compact basis set and in the other by a potential wall. The key feature of the calculations is that the degree of binding is controlled in both cases by knowledge of the negative electron affinity of the corresponding neutral, approximated in terms of DFT local functional frontier orbital eigenvalues and vertical ionization potential, A=-(epsilon(LUMO)+epsilon(HOMO))-I. To illustrate the two approaches, Fukui functions for nucleophilic attack are determined in four molecules with increasingly negative electron affinities. They yield very similar results, which are notably different to those determined without artificial electron binding. The use of a potential wall has the attractive feature that large, diffuse basis sets can be used, avoiding the need for a compact basis, tailored to a particular molecule.  相似文献   

7.
The extent of relativistic effects on the Fukui function, which describes local reactivity trends within conceptual density functional theory (DFT), and frontier orbital densities has been analysed on the basis of three benchmark molecules containing the heavy elements: Au, Pb, and Bi. Various approximate relativistic approaches have been tested and compared with the four-component fully relativistic reference. Scalar relativistic effects, as described by the scalar zeroth-order regular approximation methodology and effective core potential calculations, already provide a large part of the relativistic corrections. Inclusion of spin–orbit coupling effects improves the results, especially for the heavy p-block compounds. We thus expect that future conceptual DFT-based reactivity studies on heavy-element molecules can rely on one of the approximate relativistic methodologies.  相似文献   

8.
By using perturbations in the molecular external potential, the authors deduce the Fukui function from the change in Kohn-Sham orbital energies, avoiding the troublesome differentiation of the density with respect to electron number. Though this paper focuses on the Fukui function, the same general technique can be used to compute the functional derivative of any observable with respect to the external potential. In this paper, the method is used to compute the Fukui function for the beryllium atom and the formaldehyde molecule. The follow-up paper (part II) addresses the problem of computing condensed reactivity indicators.  相似文献   

9.
Using variable atomic numbers within molecular grand-canonical ensemble theory, the highest occupied Kohn-Sham eigenvalue of isoelectronic benzene derivatives is tuned. The performed transmutational changes correspond to the iterative doping with boron and nitrogen. The molecular Fukui function proves to be a reliable index in order to predict the changes in the highest occupied molecular orbital eigenvalue due to doping.  相似文献   

10.
11.
Four different ways to condense the Fukui function are compared. Three of them perform a numerical integration over different basins to define the condensed Fukui function, and the other one is the most traditional Fukui function using Mulliken population analysis. The basins are chosen to be the basins of the electron density (AIM), the basins of the electron localization function (ELF), and the basins of the Fukui function itself. The use of the last two basins is new and presented for the first time here. It is found that the last three methods yield results which are stable against a change in the basis set. The condensed Fukui function using the basins of the ELF is not able to give information on the reactivity of an acceptor molecule. In general, the condensed Fukui function using the basins of the density or the basins of the Fukui function describe the reactivity trends well. The latter is preferred, because it only contains information about the Fukui function itself and it gives the right information for donor as well as acceptor centers.  相似文献   

12.
Two new graph-theoretical methods, (A) and (B), have been devised for generation of eigenvectors of weighted and unweighted chemical graphs. Both the methods show that not only eigenvalues but also eigenvectors have full combinatorial (graph-theoretical) content. Method (A) expresses eigenvector components in terms of Ulam’s subgraphs of the graph. For degenerate eigenvalues this method fails, but still the expressions developed yield a method for predicting the multiplicities of degenerate eigenvalues in the graph-spectrum. Some well-known results about complete graphs (K n) and annulenes (C n ), viz. (i)K n has an eigenvalue −1 with (n−1)-fold degeneracy and (ii) C n cannot show more than two-fold degeneracy, can be proved very easily by employing the eigenvector expression developed in method (A). Method (B) expresses the eigenvectors as analytic functions of the eigenvalues using the cofactor approach. This method also fails in the case of degenerate eigenvalues but can be utilised successfully in case of accidental degeneracies by using symmetry-adapted linear combinations. Method (B) has been applied to analyse the trend in charge-transfer absorption maxima of the some molecular complexes and the hyperconjugative HMO parameters of the methyl group have been obtained from this trend.  相似文献   

13.
By using a coarse-grain representation of the molecular electronic density, we demonstrate that the value of the condensed Fukui function at an atomic site is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the atom. The link between the formation of an electron-hole pair and the condensed Fukui function provides insights on the possible negativity of the Fukui function which is interpreted in terms of two phenomena: overscreening and over-strengthening.  相似文献   

14.
The eigenvalues and eigenvectors of a quantum similarity matrix are also generalized eigenvalues and eigenvectors of the associated matrix of Carbó indices. This establishes bounds on the spectrum of the Carbó index matrix; for example, a quantum similarity matrix is positive semidefinite if and only if the associated Carbó index matrix is also positive semidefinite. The generalized eigenvalue problem for the Carbó index matrix has a diagonal metric matrix on the right-hand-side. Every generalized eigenvalue problem can be written in this diagonal form (i.e., this form is not special to this application). This diagonally structure generalized eigenvalue problem is especially convenient because it can be converted to a conventional eigenvalue problem by a particularly simple partial Löwdin transformation.  相似文献   

15.
16.
A zero eigenvalue in the spectrum of the adjacency matrix of the graph representing an unsaturated carbon framework indicates the presence of a nonbonding pi orbital (NBO). A graph with at least one zero in the spectrum is singular; nonzero entries in the corresponding zero-eigenvalue eigenvector(s) (kernel eigenvectors) identify the core vertices. A nut graph has a single zero in its adjacency spectrum with a corresponding eigenvector for which all vertices lie in the core. Balanced and uniform trivalent (cubic) nut graphs are defined in terms of (-2, +1, +1) patterns of eigenvector entries around all vertices. In balanced nut graphs all vertices have such a pattern up to a scale factor; uniform nut graphs are balanced with scale factor one for every vertex. Nut graphs are rare among small fullerenes (41 of the 10 190 782 fullerene isomers on up to 120 vertices) but common among the small trivalent polyhedra (62 043 of the 398 383 nonbipartite polyhedra on up to 24 vertices). Two constructions are described, one that is conjectured to yield an infinite series of uniform nut fullerenes, and another that is conjectured to yield an infinite series of cubic polyhedral nut graphs. All hypothetical nut fullerenes found so far have some pentagon adjacencies: it is proved that all uniform nut fullerenes must have such adjacencies and that the NBO is totally symmetric in all balanced nut fullerenes. A single electron placed in the NBO of a uniform nut fullerene gives a spin density distribution with the smallest possible (4:1) ratio between most and least populated sites for an NBO. It is observed that, in all nut-fullerene graphs found so far, occupation of the NBO would require the fullerene to carry at least 3 negative charges, whereas in most carbon cages based on small nut cubic polyhedra, the NBO would be the highest occupied molecular orbital (HOMO) for the uncharged system.  相似文献   

17.
18.
Several methods have appeared in the literature for predicting reactivity on metallic surfaces and on the surface of metallic nanoparticles. All of these methods have some relationship to the concept of frontier molecular orbital theory. The d-band theory of Hammer and N?rskov is perhaps the most widely used predictor of reactivity on metallic surfaces, and it has been successfully applied in many cases. Use of the Fukui function and the condensed Fukui function is well established in organic chemistry, but has not been so widely applied in predicting the reactivity of metallic nanoparticles. In this article, we will evaluate the usefulness of the condensed Fukui function in predicting the reactivity of a family of cubo-octahedral gold nanoparticles and make comparison with the d-band method.  相似文献   

19.
Density-functional electronic structure calculations are performed on the molecules Cr2(hpp)4, Mo2(hpp)4, and W2(hpp)4, where the bridging ligand, hpp, is the anion of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine. The calculated electronic densities are used to determine the Fukui functions. These molecules are unique not only in their ability as electron donors but also because orbital relaxation plays a decisive role in their reactivity. Unlike other examples in the literature, the reactivity of these compounds cannot be expressed solely in terms of the highest occupied and lowest unoccupied Kohn-Sham orbitals but only using the Fukui function, which includes the effects of orbital relaxation.  相似文献   

20.
In the course of a reaction it is the shape of the Fukui potential that guides a distant reagent toward the site where an electrophile/nucleophile is willing to accept/donate charge. In this paper we explore the mathematical characteristics of the Fukui potential and demonstrate its relationship to the hardness and the ability of an atom in a molecule to change its charge. The Fukui potential not only determines the active site for electron transfer, but it also approximates the distribution of hardness of a molecule: it is the Coulomb contribution to the frontier local hardness. The Fukui potential at the position of the nuclei is equal to the variation of the chemical potential with the nuclear charge and therefore measures the sensitivity of the system to changes in atom type. In the specific case of atoms and slightly charged ions, the Fukui potential at the nucleus measures the hardness. The strong correlation between the hardness and the Fukui potential at the nucleus suggests that the Fukui potential at the nucleus is an alternative definition for the chemical hardness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号