首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Y  Li B  Jin Y 《The Analyst》2011,136(16):3268-3273
We report herein a label-free and sensitive fluorescent method for detection of thrombin using a G-quadruplex-based DNAzyme as the sensing platform. The thrombin-binding aptamer (TBA) is able to bind hemin to form the G-quadruplex-based DNAzyme, and thrombin can significantly enhance the activity of the G-quadruplex-based DNAzyme. The G-quadruplex-based DNAzyme is found to effectively catalyze the H(2)O(2)-mediated oxidation of thiamine, giving rise to fluorescence emission. This allows us to utilize the H(2)O(2)-thiamine fluorescent system for the quantitative analysis of thrombin. The assay shows a linear toward thrombin concentration in the range of 0.01-0.12 nM. The present limit of detection for thrombin is 1 pM, and the sensitivity for analyzing thrombin is improved by about 10,000-fold as compared with the reported colorimetric counterpart. The work also demonstrates that thiamine is an excellent substrate for the fluorescence assay using the G-quadruplex-based DNAzyme as the sensing platform.  相似文献   

2.
Li H  Zhai J  Sun X 《The Analyst》2011,136(10):2040-2043
In this Communication, we report water-soluble nano-C(60) in the first use as an effective fluorescent sensing platform for the highly sensitive and selective detection of Ag(+). The general concept used in this approach is based on a fluorescently labeled single-stranded DNA (ssDNA) probe that adsorbs on nano-C(60), leading to substantial dye fluorescence quenching; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on nano-C(60) and thus retains the dye fluorescence. This sensing system exhibits a detection limit as low as 1 nM and has a high selectivity against other metal ions. Finally and most importantly, we demonstrate its performance in real sample analysis.  相似文献   

3.
In this communication, we demonstrate for the first time the proof of concept that carbon nanoparticles (CNPs) can be used as an effective fluorescent sensing platform for nucleic acid detection with selectivity down to single-base mismatch. The dye-labeled single-stranded DNA (ssDNA) probe is adsorbed onto the surface of the CNP via π-π interaction, quenching the dye. In the target assay, a double-stranded DNA (dsDNA) hybrid forms, recovering dye fluorescence.  相似文献   

4.
In this communication, we demonstrate for the first time the proof of concept that single-walled carbon nanohorns can be used as an effective fluorescent sensing platform for nucleic acid detection with a high selectivity down to single-base mismatch.  相似文献   

5.
6.
In this Letter, we demonstrate the first use of carbon nanoparticles (CNPs) obtained from carbon soot by lighting a candle as a cheap, effective fluorescent sensing platform for Ag(+) detection with a detection limit as low as 500 pM and high selectivity. We further demonstrate its practical application to detect Ag(+) in a real sample.  相似文献   

7.
We demonstrate that CdS quantum dots (QDs) can be applied to fluorescence-enhanced detection of nucleic acids in a two-step protocol. In step one, a fluorescently labeled single-stranded DNA probe is adsorbed on the QDs to quench its luminescence. In step two, the hybridization of the probe with its target ssDNA produces a double-stranded DNA which detaches from the QD. This, in turn, leads to the recovery of the fluorescence of the label. The lower detection limit of the assay is as low as 1?nM. The scheme (that was applied to detect a target DNA related to the HIV) is simple and can differentiate between perfectly complementary targets and mismatches.
Figure
CdS quantum dots (CdSQDs) can serve as an effective sensing platform for fluorescence-enhanced DNA detection. This sensing system has a detection limit of 1?nM and is capable of differentiating between complementary and mismatched sequences.  相似文献   

8.
This article describes a simple and homogeneous fluorescent aptasensor for the detection of ochratoxin A (OTA). With its high specificity and simplicity; RecJf exonuclease is used to cleave DNA strand of the FAM-aptamer/OTA complex and realize target recycling signal amplification. In order to avoid the loss of reaction system, magnetic beads (MBs) are added only once at the last experimental step. This proposed fluorescent aptasensor showed the higher sensitivity in the range of 0.1–100 ng/mL with LOD of 0.056 ng/mL, and the good selectivity against other interfering toxins. The feasibility of the prepared aptasensor was studied by detecting OTA in spiked liquor and cereal samples. The obtained average recoveries ranged from 92% to 115%. This study provides a promising application with convenience and rapidness in the aptasensor fabrication for food safety analysis.  相似文献   

9.
Li H  Sun X 《Analytica chimica acta》2011,702(1):109-113
In this paper, we report on the use of 3,4,9,10-perylenetetracarboxylic diimide microfibers (PDIMs) as an effective fluorescent sensing platform for DNA detection for the first time. This sensing system exhibits a detection limit as low as 15 nmol L−1 and has a high selectivity down to single-base mismatch. The general concept used in this approach is based on adsorption of fluorescently labeled single-stranded DNA (ssDNA) probe by PDIM due to the strong π–π stacking between unpaired DNA bases and PDIM. As a result, the fluorophore is brought into close proximity of PDIM, leading to substantial fluorescence quenching. In the presence of the target, the specific hybridization of the probe with its complementary DNA sequence generates a double stranded DNA (dsDNA) which detaches from PDIM, leading to fluorescence recovery. Its generality of this sensing platform for protein detection is also demonstrated.  相似文献   

10.
A novel aptamer biosensor for cancer cell assay has been reported on the basis of ultrasensitive electrochemical detection. The assay uses the aptamer as a capture probe to recognize and bind the tumor marker on the surface of the cancer cells, forming an aptamer-based sandwich structure for MCF-7 cells detection. Functionalized nanoporous materials, porous graphene oxide/Au composites (GO/Au composites) and porous PtFe alloy have been introduced into the biosensor. Owing to the large surface area and versatile porous structure, the use of nanoporous materials can significantly improve the analysis performance of the biosensors by loading of large amounts of molecules and accelerating diffusion rate. Under the optimized experimental conditions, the proposed aptamer biosensor exhibited excellent analytical performance for MCF-7 cells determination, ranging from 100 to 5.0 × 107 cells mL−1 with the detection limit of 38 cells mL−1. The biosensor showed good selectivity, acceptable stability and reproducibility, and developed a highly sensitive and selective method for cancer cells detection.  相似文献   

11.
Cancer is one of the most serious and lethal diseases around the world. Its early detection has become a challenging goal. To address this challenge, we developed a novel sensing platform using aptamer and RNA polymerase-based amplification for the detection of cancer cells. The assay uses the aptamer as a capture probe to recognize and bind the tumor marker on the surface of the cancer cells, forming an aptamer-based sandwich structure for collection of the cells in the microplate wells, and uses SYBR Green II dye as a tracer to produce strong fluorescence signal. The tumor marker interacts first with the recognition probes which were composed of the aptamer and single-stranded T7 RNA polymerase promoter. Then, the recognition probe hybridized with template probes to form a double-stranded T7 RNA polymerase promoter. This dsDNA region is extensively transcribed by T7 RNA polymerase to produce large amounts of RNAs, which are easily monitored using the SYBR Green II dye and a standard fluorometer, resulting in the amplification of the fluorescence signal. Using MCF-7 breast cancer cell as the model cell, the present sensing platform showed a linear range from 5.0 × 102 to 5.0 × 106 cells mL−1 with a detection limit of 5.0 × 102 cells mL−1. This work suggested a strategy to use RNA signal amplification combining aptamer recognition to develop a highly sensitive and selective method for cancer cells detection.  相似文献   

12.
13.
We utilized CuNiO nanoparticles modified graphene sheets (CuNiO–graphene) to the application of enzymeless glucose sensing. The hydrothermal synthesized CuNiO nanoparticles were successfully assembled on graphene sheets. Distinct from general method, the high quality pristine graphene was produced by chemical vapor deposition (CVD) and bubbling transferred on the electrode. Incorporating the excellent electronic transport of graphene and high electrocatalytic activity of CuNiO nanoparticles, the CuNiO–graphene nanocomposite modified electrode possessed strong electrocatalytic ability toward glucose in alkaline media. The proposed nonenzymatic glucose sensor exhibited wide linear range up to 16 mM (two parts, from 0.05 to 6.9 mM and 6.9–16 mM) and high sensitivity (225.75 μA mM−1 cm−2 and 32.44 μA mM−1 cm−2, respectively). Excellent selectivity and acceptable stability were also achieved. Such an electrode would be attractive to sensor construction for its good properties, simple operation and low expense.  相似文献   

14.
The three-dimensional fibril-like carbon fiber mat electrode (CFME) decorated with Au nanoparticles (AuNPs) was employed to construct Hg(II) sensing platform for the first time. The highly porous feature of CFME combining the high affinity of AuNPs for mercury endowed the sensing platform with high sensitivity and good reproducibility. Under optimal conditions, the prepared AuNPs/CFME was capable of sensing Hg(II) with a detection limit of 0.1 μg L 1 (S/N = 3) using differential pulse anodic stripping voltammetry (DPASV). Finally, the AuNPs/CFME was successfully demonstrated for the determination of Hg(II) in real water samples with satisfactory results.  相似文献   

15.
Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields.  相似文献   

16.
A sensitive electrochemical approach for the detection of thrombin was designed by using densely packed hierarchical dendritic gold microstructures (HDGMs) with secondary and tertiary branches as matrices, and thionine-functionalized mesoporous silica nanospheres as signal tags. To prepare the signal tags, the positively charged thionine (as an indicator) was initially adsorbed onto the mesoporous silica nanoparticles (MSNs). Then [AuCl4] ions were in situ reduced on the thionine-modified MSNs by ascorbic acid to construct nanogold-decorated MSNs (GMSNs). The formed GMSNs were employed as label of the aminated aptamers. The assay was carried out in PBS, pH 7.4 with a sandwich-type assay mode by using the assembled thionine in the GMSNs as indicators. Compared with the pure silica nanoparticles, mesoporous silica could provide a larger surface for the immobilization of biomolecules and improve the sensitivity of the aptasensor. Under optimal conditions, the electrochemical aptasensors exhibited a wide linear range from 0.001 to 600 ng mL−1 (i.e. 0.03 pM to 0.018 μM thrombin) with a low detection limit (LOD) of 0.5 pg mL−1 (≈15 fM) thrombin at 3σ. No obvious non-specific adsorption was observed during a series of analyses to detect target analyte. The precision, selectivity and stability of the aptasensors were acceptable. Importantly, the methodology was evaluated with thrombin spiked samples in blank fetal calf serum, and the recoveries were 94.2–112%, indicating an exciting potential for thrombin detection.  相似文献   

17.
Coordination polymer colloids have been used as an effective fluorescent sensing platform for multiplexing nucleic acid detection capable of distinguishing complementary and mismatched target sequences for the first time.  相似文献   

18.
19.
Tian J  Li H  Lu W  Luo Y  Wang L  Sun X 《The Analyst》2011,136(9):1806-1809
The chemical oxidation polymerization of m-phenylenediamine (MPD) by ammonium persulfate (APS) at room temperature results in the formation of poly(m-phenylenediamine) (PMPD) microparticles. The subsequent treatment of such microparticles with an aqueous AgNO(3) solution produces Ag nanoparticle (AgNP)-decorated PMPD microparticles. It was found that as-formed AgNPs exhibited remarkable catalytic performance toward the reduction of hydrogen peroxide (H(2)O(2)). The enzymeless H(2)O(2) sensor constructed with such composites showed a fast amperometric response time of less than 5 s, and the corresponding linear range and detection limit were estimated to be from 0.1 to 30 mM and 4.7 μM, respectively, at a signal-to-noise ratio of 3.  相似文献   

20.
Sulfadiazine (SDZ) is a broad-spectrum antibiotic used to treat bacterial infections in animals, and SDZ residues in food can be harmful to human health. As a result, an aptasensor based on silica nanoparticles was developed for the rapid detection of SDZ. An aptamer that specifically binds to SDZ was obtained using graphene oxide-SELEX and further truncated to a 13 nt sequence (SDZ30-1:5′-AACCCAATGGGAT-3′), which has a high affinity (Kd = 65.72 nM). In addition, it was found by molecular simulation that a steric hindrance could prevent the target molecule from entering the binding pocket formed by the key base “TGG”, which affects the total binding free energy of SDZ30-1 and the target molecule, thereby affecting the affinity of SDZ30-1 to the target. The SDZ30-1 was selected as the fluorescent probe to establish an aptasensor for the detection of SDZ residues in milk and honey. The aptasensor exhibited a wide dynamic linear range (3.125 – 100 ng/mL) and a limit of detection (LOD = 1.68 ng/mL). The aptasensor in spiked samples recovered at a rate of 95.12 – 105.47%, with a coefficient of variation of less than 13.18 %. The results of aptasensor were positively correlated with those of HPLC (R2 > 0.8687). Based on the above results, it could be inferred that the aptasensor can be used sensitively and rapidly for the detection of SDZ residues in edible tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号