首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The problem of an isotropic sheet with an internal elliptical dent, corrosion grind-out, or cut-out repaired with an elliptical bonded patch is analyzed, following the similar two-stage analysis originally proposed by Rose [International Journal of Solid and Structures 17 (1981) 827; in: Bakers, Jones (Eds.), Bonded Repair of Aircraft Structures, Martinus Nijhoff, Dordrecht, 1988, p. 77] for a crack patching problem. For simplicity, the bending effect is ignored in the analysis. In the first stage, an infinite sheet reinforced by an elliptical patch under a prescribed far-field stress is analyzed using the inclusion analogy, without considering the dent, grind-out or cut-out. The constant stresses inside the patched area (σ0ij) are then calculated and later used as the far-field boundary conditions for the second (stage II) problem. In the second stage, the patch is assumed to be infinite and an integral part of the sheet. Stage II analysis then involves solving a problem of an infinite patched sheet containing a circular dent, grind-out, or cut-out under far-field stresses σ0ij. The latter problem is also solved using the inclusion analogy. Because the patch in a typical design is much larger than the damage area, the solutions of the first and second problems are approximately the same as the solutions of the original problem inside and outside the patched area, respectively.  相似文献   

2.
The slumping of a thin sheet of very viscous liquid glass is used in the manufacture of windscreens in the automotive industry. The governing equations for an asymptotically thin sheet with variable viscosity are derived in which the vertical coordinate forms the centre‐line of the sheet. The time‐dependant equations have been solved numerically using the backward Euler method to give results in both two and three dimensions. The flow of an initially flat sheet falls freely under gravity until it becomes curved and the flow becomes very slow in the ‘slumped’ phase. Finally the sheet freefalls as the thickness becomes small at the boundaries. The inverse problem in which the viscosity profile is to be determined for a given shape can be solved as an embedding problem in which a search is made amongst the forward solutions. Possible shapes in the two‐dimensional problem are very restrictive and are shown to be related to the sheet thickness. In three dimensions the range of shapes is much greater. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
An analysis is carried out to study the unsteady magnetohydrodynamic (MHD) two-dimensional boundary layer flow of a second grade viscoelastic fluid over an oscillatory stretching surface. The flow is induced due to an infinite elastic sheet which is stretched back and forth in its own plane. For the investigated problem, the governing equations are reduced to a non-linear partial differential equation by means of similarity transformations. This equation is solved both by a newly developed analytic technique, namely homotopy analysis method (HAM) and by a numerical method employing the finite difference scheme, in which a coordinate transformation is employed to transform the semi-infinite physical space to a bounded computational domain. The results obtained by means of both methods are then compared and show an excellent agreement. The effects of various parameters like visco-elastic parameter, the Hartman number and the relative frequency amplitude of the oscillatory sheet to the stretching rate on the velocity field are graphically illustrated and analysed. The values of wall shear stress for these parameters are also tabulated and discussed.  相似文献   

4.
This paper deals with a technique to transform a free surface flow problem in the physical domain with an unknown boundary to a standard domain that has a fixed boundary. All the difficulties in the physical domain are reduced to finding an unknown mapping function that can be solved iteratively in a standard domain. A derivation is first presented to express an analytic function in terms of the boundary value of its imaginary part. Using a relationship between boundaries of the standard and the physical domains, a formula for the generalized Schwarz–Christoffel transformation is then developed. Based on the generalized Schwarz–Christoffel integral and the Hilbert transform, a pair of non‐linear boundary integro‐differential equations in an infinite strip is formulated for solving fully non‐linear free surface flow problems. The boundary integral equations are then discretized with quadratic elements in an untruncated standard domain and solved by the Levenberg–Marquardt algorithm. Several examples of supercritical flow past obstructions are provided to demonstrate the flexibility and the accuracy of the proposed numerical scheme. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
The MHD Falkner–Skan equation arises in the study of laminar boundary layers exhibiting similarity on the semi‐infinite domain. The proposed approach is equipped by the orthogonal Sinc functions that have perfect properties. This method solves the problem on the semi‐infinite domain without truncating it to a finite domain and transforming domain of the problem to a finite domain. In addition, the governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables, and then they are solved numerically by the Sinc‐collocation method. It is shown that the Sinc‐collocation method converges to the solution at an exponential rate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The perturbations in a nearly flat vortex sheet will initially grow due to Kelvin-Helmholtz instability. Asymptotic analysis and numerical computations of the subsequent nonlinear evolution show several interesting features. At some finite time the vortex sheet develops a singularity in its shape; i.e. the curvature becomes infinite at a point. This is immediately followed by roll-up of the sheet into an infinite spiral. This paper presents two mathematical results on nonlinear vortex sheet evolution and singularity formation: First, for sufficiently small analytic perturbations of the flat sheet, existence of smooth solutions of the Birkhoff-Rott equation is proved almost up to the expected time of singularity formation. Second, we present a construction of exact solutions that develop singularities (infinite curvature) in finite time starting from analytic initial data. These results are derived within the framework of analytic function theory.  相似文献   

7.
The strip yield model is used to assess the link-up of multiple fatigue cracks in a simple open hole configuration. This analysis is based upon the complex stress function formulation of the problem of multiple straight collinear cuts in an infinite sheet. The predictions of link-up and fracture are compared to results from a fatigue crack propagation test on an open hole specimen, and are shown to be in very close agreement.  相似文献   

8.
A parallel computer implementation of a vorticity formulation for the analysis of incompressible viscous fluid flow problems is presented. The vorticity formulation involves a three‐step process, two kinematic steps followed by a kinetic step. The first kinematic step determines vortex sheet strengths along the boundary of the domain from a Galerkin implementation of the generalized Helmholtz decomposition. The vortex sheet strengths are related to the vorticity flux boundary conditions. The second kinematic step determines the interior velocity field from the regular form of the generalized Helmholtz decomposition. The third kinetic step solves the vorticity equation using a Galerkin finite element method with boundary conditions determined in the first step and velocities determined in the second step. The accuracy of the numerical algorithm is demonstrated through the driven‐cavity problem and the 2‐D cylinder in a free‐stream problem, which represent both internal and external flows. Each of the three steps requires a unique parallelization effort, which are evaluated in terms of parallel efficiency. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
An analysis is performed to study the free convection of a dusty‐gas flow along a semi‐infinite isothermal vertical cylinder. The governing equations of the flow problem are transformed into non‐dimensional form and the resulting nonlinear, coupled parabolic partial differential equations have been solved numerically using an implicit finite difference scheme of Crank–Nicholson type. The flow variables such as gas–velocity, dust‐particle velocity and temperature, shearing stress and heat transfer coefficients are calculated numerically for various parameters occurring in the problem. It is observed that due to the presence of dust particles, the gas velocity is found to decrease. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A novel numerical procedure for heat, mass and momentum transfer in fluid flow is presented. The new scheme is passed on a non‐upwind, interconnected, multi‐grid, overlapping (NIMO) finite‐difference algorithm. In 2D flows, the NIMO algorithm solves finite‐difference equations for each dependent variable on four overlapping grids. The finite‐difference equations are formulated using the control‐volume approach, such that no interpolations are needed for computing the convective fluxes. For a particular dependent variable, four fields of values are produced. The NIMO numerical procedure is tested against the exact solution of two test problems. The first test problem is an oblique laminar 2D flow with a double step abrupt change in a passive scalar variable for infinite Peclet number. The second test problem is a rotating radial flow in an annular sector with a single step abrupt change in a passive scalar variable for infinite Peclet number. The NIMO scheme produced essentially the exact solution using different uniform and non‐uniform square and rectangular grids for 45 and 30° angle of inclination. All other schemes were unable to capture the exact solution, especially for the rectangular and non‐uniform grids. The NIMO scheme was also successful in predicting the exact solution for the rotating radial flow, using a uniform cylindrical‐polar coordinate grid. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
An explicit formulation to study nonlinear waves interacting with a submerged body in an ideal fluid of infinite depth is presented. The formulation allows one to decompose the nonlinear wave–body interaction problem into body and free‐surface problems. After the decomposition, the body problem satisfies a modified body boundary condition in an unbounded fluid domain, while the free‐surface problem satisfies modified nonlinear free‐surface boundary conditions. It is then shown that the nonlinear free‐surface problem can be further reduced to a closed system of two nonlinear evolution equations expanded in infinite series for the free‐surface elevation and the velocity potential at the free surface. For numerical experiments, the body problem is solved using a distribution of singularities along the body surface and the system of evolution equations, truncated at third order in wave steepness, is then solved using a pseudo‐spectral method based on the fast Fourier transform. A circular cylinder translating steadily near the free surface is considered and it is found that our numerical solutions show excellent agreement with the fully nonlinear solution using a boundary integral method. We further validate our solutions for a submerged circular cylinder oscillating vertically or fixed under incoming nonlinear waves with other analytical and numerical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Taking Hall and ion‐slip current into account, the unsteady magnetohydrodynamic heat‐generating free convective flow of a partially ionized gas past an infinite vertical plate in a rotating frame of reference is investigated theoretically. A computer program using finite elements is employed to solve the coupled non‐linear differential equations for velocity and temperature fields. The effects of Hall and ion‐slip currents as well as the other parameters entering into the problem are discussed extensively and shown graphically. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The problem of a branched crack consisting of a main crack and a straight branch starting from one of its tip located in an infinite elastic sheet is considered under the assumptions of two-dimensional theory of Elasticity. Employing Kolosov-Muskhelishvili representation of the stress function and other well known techniques the problem is reduced to the solution of an integral equation. The nature of the stress singularity at the re-entrant corner, where the two branches of the crack meet, is discussed. Based upon a numerical solution of the integral equation the stress intensity factors at the two tips are computed for two types of prescribed traction at infinity and various geometric configurations of the branched crack.  相似文献   

14.
The paper deals with a direct central impact of two infinite cylindrical bodies having differently shaped cross sections and made of different materials. A nonstationary plane problem of elasticity is solved. The contact boundary is moving and determined during the solution. A mixed boundary-value problem is formulated. Its solution has the form of Fourier series. Satisfying mixed boundary conditions gives an infinite system of Volterra equations of the second kind for the unknown coefficients of the series. The basic characteristics of the impact process and their dependence on the physical and mechanical properties of the bodies are determined numerically Translated from Prikladnaya Mekhanika, Vol. 45, No. 2, pp. 36–45, February 2009.  相似文献   

15.
An improved progressive preconditioning method for analyzing steady inviscid and laminar flows around fully wetted and sheet‐cavitating hydrofoils is presented. The preconditioning matrix is adapted automatically from the pressure and/or velocity flow‐field by a power‐law relation. The cavitating calculations are based on a single fluid approach. In this approach, the liquid/vapour mixture is treated as a homogeneous fluid whose density is controlled by a barotropic state law. This physical model is integrated with a numerical resolution derived from the cell‐centered Jameson's finite volume algorithm. The stabilization is achieved via the second‐and fourth‐order artificial dissipation scheme. Explicit four‐step Runge–Kutta time integration is applied to achieve the steady‐state condition. Results presented in the paper focus on the pressure distribution on hydrofoils wall, velocity profiles, lift and drag forces, length of sheet cavitation, and effect of the power‐law preconditioning method on convergence speed. The results show satisfactory agreement with numerical and experimental works of others. The scheme has a progressive effect on the convergence speed. The results indicate that using the power‐law preconditioner improves the convergence rate, significantly. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Capillary absorption by an initially dry porous sheet or surface is examined. The sheet absorbs moisture from one end while evaporation takes place across its surface. We are interested in the effect of evaporation on the progress and distribution of moisture in the sheet, including the equilibrium moisture profile. The process is modelled using a nonlinear diffusion equation with a linear sink. An algebraic analytical approximation is obtained relating the various physical parameters as well as an exact steady state solution for arbitrary properties. The complete problem is solved numerically. Good agreement is obtained between the analytical and numerical solutions.  相似文献   

17.
We study a modified version of the Lane-Emden equation of the second kind modelling a thermal explosion in an infinite cylinder and a sphere. We first show that the solution to the relevant boundary value problem is bounded and that the solutions are monotone decreasing. The upper bound, the value of the solution at zero, can be approximated analytically in terms of the physical parameters. We obtain solutions to the boundary value problem, using both the Taylor series (which work well for weak nonlinearity) and the b-expansion method (valid for strong nonlinearity). From here, we are able to deduce the qualitative behavior of the solution profiles with a change in any one of the physical parameters.  相似文献   

18.
The time-periodic motions of a liquid layer of finite depth beneath an ice sheet with a straight infinite crack having a periodic dependence on the horizontal coordinate in the direction of the crack are considered. The ice sheet is simulated by a thin elastic plate. It is assumed that the thickness of the plate changes abruptly across the crack. The problems of plane-wave diffraction at a crack, plane-wave diffraction atN cracks in a uniform ice sheet, and plane-wave reflection from a rigid wall are solved. The effect of the pre-existing state of stress of the ice sheet on the properties of the reflected waves is investigated. The condition of nontransmission of fix-frequency waves beneath the edge of the ice is obtained.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 93–102, March–April, 1993.  相似文献   

19.
The control of complex, unsteady flows is a pacing technology for advances in fluid mechanics. Recently, optimal control theory has become popular as a means of predicting best case controls that can guide the design of practical flow control systems. However, most of the prior work in this area has focused on incompressible flow which precludes many of the important physical flow phenomena that must be controlled in practice including the coupling of fluid dynamics, acoustics, and heat transfer. This paper presents the formulation and numerical solution of a class of optimal boundary control problems governed by the unsteady two‐dimensional compressible Navier–Stokes equations. Fundamental issues including the choice of the control space and the associated regularization term in the objective function, as well as issues in the gradient computation via the adjoint equation method are discussed. Numerical results are presented for a model problem consisting of two counter‐rotating viscous vortices above an infinite wall which, due to the self‐induced velocity field, propagate downward and interact with the wall. The wall boundary control is the temporal and spatial distribution of wall‐normal velocity. Optimal controls for objective functions that target kinetic energy, heat transfer, and wall shear stress are presented along with the influence of control regularization for each case. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Two infinite interacting parallel cracks in an elastic–plastic and in an elastic body under anti-plane strain (mode III) loading conditions are considered. The body is subjected to vanishing remote loading and the cracks are traction free. Closed-form solution is found for the elastic–plastic problem in terms of elementary functions, where the shape of the plastic boundary is obtained. The complete stress distribution is obtained in an inverse form i.e. physical coordinates are functions of stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号