首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lin X  Zhu C  Hao A 《Electrophoresis》2005,26(20):3890-3896
The resolving ability of 2-O-(2-hydroxybutyl)-beta-CD (HB-beta-CD) with different degrees of substitution (DS = 2.9 and 4.0) as a chiral selector in CZE is reported in this work. Fourteen chiral drugs belonging to different classes of compounds of pharmaceutical interest such as beta-agonists, antifungal agents, ageneric agents, etc., were resolved. The effects of the DS of HB-beta-CD on separations were also investigated. The chiral resolution (R(s)) was strongly influenced by the concentrations of the CD derivative, the BGE, and the pH of the BGE. Under the conditions of 50 mmol/L Tris-phosphate buffer at pH 2.5 containing 5 mmol/L HB-beta-CD, all 14 analytes were separated. The very low concentration necessary to obtain separation was particularly impressive. The DS had a significant effect on the resolution of the chiral drugs and the ionic strength of the separation media; hence, the use of a well-characterized CD derivative is crucial.  相似文献   

2.
Capillary electrophoresis methods were developed for the enantiomeric separation of 27 citalopram analogues. Sulfated β‐cyclodextrin was the most broadly selective and useful chiral selector. The separations of most of the citalopram analogue compounds reported in this work have not been reported previously. Excellent enantiomeric separations were obtained for 26 out of 27 compounds, and most of the separations were achieved within 10 min. The effects of chemical parameters such as chiral selector types, buffer types, chiral selector and buffer concentrations, buffer pH and organic modifiers on the separation were investigated. The influence of analyte structure on separation also was examined and discussed.  相似文献   

3.
Lin CE  Liao WS  Cheng HT  Kuo CM  Liu YC 《Electrophoresis》2005,26(20):3869-3877
In this study, enantioseparations of five phenothiazines, including promethazine, ethopropazine, trimeprazine, methotrimeprazine, and thioridazine, in CD-modified CZE using dual CD systems consisting of randomly sulfate-substituted CD (MI-S-beta-CD) and a neutral CD as chiral selectors in a citrate buffer (100 mM) at pH 3.0 were investigated. The results indicate that MI-S-beta-CD is an excellent chiral selector for enantioseparation of ethopropazine. The enantiomers of promethazine can also be baseline-resolved with MI-S-beta-CD at concentrations in the range of 0.5-1.0% w/v. On the other hand, thioridazine and trimeprazine interact strongly with neutral CDs. As a result, the enantioselectivity of these two phenothiazines is remarkably and synergistically enhanced with increasing the concentration of neutral CDs in the presence of MI-S-beta-CD and simultaneous enantioseparations of these phenothiazines, except for methotrimeprazine, could favorably be achieved with the use of dual CD systems. Moreover, by varying the concentration of beta-CD or gamma-CD at a fixed concentration of MI-S-beta-CD (0.75% w/v) reversal of the enantiomer migration order of promethazine occurred. This may be attributable to the opposite effects of charged and neutral CDs on the mobility of the enantiomers of promethazine.  相似文献   

4.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated.  相似文献   

5.
Introducing a new class of chiral selectors is an interesting work and this issue is still one of the hot topics in separation science and chirality. In this study, for the first time, sulfated maltodextrin (MD) was synthesized as a new anionic chiral selector and then it was successfully applied for the enantioseparation of five basic drugs (amlodipine, hydroxyzine, fluoxetine, tolterodine, and tramadol) as model chiral compounds using CE. This chiral selector has two recognition sites: a helical structure and a sulfated group which contribute to three corresponding driving forces; inclusion complexation, electrostatic interaction, and hydrogen binding. Under the optimized condition (buffer solution: 50 mM phosphate (pH 3.0) and 2% w/v sulfated MD; applied voltage: 18 kV; temperature: 20°C), baseline enantioseparation was observed for all mentioned chiral drugs. When instead of sulfated MD neutral MD was used under the same condition, no enantioseparation was observed which means the resolution power of sulfated MD is higher than neutral MD due to the electrostatic interaction between sulfated groups and protonated chiral drugs. Also, the countercurrent mobility of negatively charged MD (sulfated MD) allows more interactions between the chiral selector and chiral drugs and this in turn results in a successful resolution for the enantiomers. Furthermore, a higher concentration of neutral MD (approximately five times) is necessary to achieve the equivalent resolution compared with the negatively charged MD.  相似文献   

6.
The evaluation of a macrocyclic glycopeptide antibiotic, eremomycin, as a chiral selector in capillary electrophoresis (CE) has been performed. The stability of eremomycin in solution and capillary electrolyte, as well as its optical and electrophoretic properties have been discussed. The effect of experimental parameters influencing the enantioseparation of several profens has been studied. Excellent enantioseparation of profens has been achieved and migration order has been validated. Comparison of enantioseparations of profens in CE by using eremomycin-mediated electrolytes and in HPLC with eremomycin immobilized on silica has revealed similar trends for both methods.  相似文献   

7.
New single‐isomer, cationic β‐cyclodextrins, including mono‐6‐deoxy‐6‐pyrrolidine‐β‐cyclodextrin chloride (pyCDCl), mono‐6‐deoxy‐6‐(N‐methyl‐pyrrolidine)‐β‐cyclodextrin chloride (N‐CH3‐pyCDCl), mono‐6‐deoxy‐6‐(N‐(2‐hydroxyethyl)‐pyrrolidine)‐β‐cyclodextrin chloride (N‐EtOH‐pyCDCl), mono‐6‐deoxy‐6‐(2‐hydroxymethyl‐pyrrolidine)‐β‐cyclodextrin chloride (2‐MeOH‐pyCDCl) were synthesized and used as chiral selectors in capillary electrophoresis for the enantioseparation of carboxylic and hydroxycarboxylic acids and dansyl amino acids. The unsubstituted pyCDCl exhibited the greatest resolving ability. Most analytes were resolved over a wide range of pH from 6.0 to 9.0 with this chiral selector. In general, increasing pH led to a decrease in resolution. The effective mobilities of all the analytes were found to decrease with increasing CD concentration. The optimal concentration for most carboxylic acids and dansyl amino acid was in the range 5–7.5 mM and >15 mM for hydroxycarboxylic acids. 1H NMR experiments provided direct evidence of inclusion in the CD cavity.  相似文献   

8.
La S  Ahn S  Kim JH  Goto J  Choi OK  Kim KR 《Electrophoresis》2002,23(24):4123-4131
Simultaneous enantioseparations of 15 racemic aromatic amino acids and L-mimosine for their chiral discrimination were achieved by neutral selector-modified capillary electrophoresis (CE) and by charged selector-modified CE. Among the diverse cyclodextrins (CDs) examined, hydroxypropyl (HP)-alpha-CD as the neutral selector and highly sulfated (HS)-gamma-CD as the charged selector provided best chiral environments of different enantioselectivities. Fairly good enantiomeric resolutions were achieved with the HP-alpha-CD mode except for racemic 6-hydroxy-3,4-dihydroxyphenylalanine, threo-3,4-dihydroxyphenylserine and homophenylalanine while high-resolution separations of all the enantiomeric pairs were achieved in the HS-gamma-CD mode except that L-mimosine was not detected and a partial resolution (0.6) for threo-3,4-dihydroxyphenylserine enantiomers. Relative migration times to that of internal standard under the respective optimum conditions were characteristic of each enantiomer with good precision (% RSD: 0.7-3.8), thereby enabling to cross-check the chemical identification of aromatic amino acids and also their chiralities. The method linearity was found to be adequate (r> 0.99) for the chiral assay of the aromatic amino acids investigated. When applied to extracts of three plant seeds, nonprotein amino acids such as L-mimosine (42 nug/g) from Mimosa pudica Linné, and L-3,4-dihydroxyphenylalanine (268 nug/g) from Vicia faba were positively detected along with L-tryptophan, L-phenylalanine and L-tyrosine.  相似文献   

9.
Using two kinds of central metal ions in a background electrolyte, ligand exchange CE was investigated for the simultaneous enantioseparation of dl ‐malic, dl ‐tartaric, and dl ‐isocitric acids. Ligand exchange CE with 100 mM d ‐quinic acid as a chiral selector ligand and 10 mM Cu(II) ion as a central metal ion could enantioseparate dl ‐tartaric acid but not dl ‐malic acid or dl ‐isocitric acid. A dual central metal ion system containing 0.5 mM Al(III) ion in addition to 10 mM Cu(II) ion in the background electrolyte enabled the simultaneous enantioseparation of the three α‐hydroxy acids. These results suggest that the use of a dual central metal ion system can be useful for enantioseparation by ligand exchange CE.  相似文献   

10.
Liao WS  Lin CH  Chen CY  Kuo CM  Liu YC  Wu JC  Lin CE 《Electrophoresis》2007,28(21):3922-3929
Enantioseparations of five chiral phenothiazines in CD-modified CZE using the single isomer sulfate-substituted beta-CD (heptakis(2,3-dihydroxy-6-O-sulfo)-beta-CD, SI-S-beta-CD) and dual CD systems consisting of SI-S-beta-CD and a neutral CD as chiral selectors in a citrate buffer at pH 3.0 were investigated. The results indicate that SI-S-beta-CD is an excellent chiral selector for enantioseparation of promethazine. The enantiomers of trimeprazine were well separated, while those of ethopropazine could also be baseline-resolved with SI-S-beta-CD. With dual CD systems, especially with hydroxypropyl-beta-CD (HP-beta-CD) as neutral CD, the enantioselectivity of thioridazine and ethopropazine was considerably enhanced. Effective enantioseparation of phenothiazines, except for methotrimeprazine, could thus be favorably and simultaneously achieved. Moreover, reversal of the enantiomer migration order of ethopropazine and thioridazine occurred by varying the concentration of gamma-CD in the presence of SI-S-beta-CD. These phenomena may be attributable to the opposite effects of sulfated beta-CD and gamma-CD on the mobility of the enantiomers of ethopropazine and of thioridazine. Comparative studies on the enantioseparations of phenothiazines with single CD and dual CD systems containing SI-S-beta-CD and randomly sulfate-substituted beta-CD (MI-S-beta-CD) were made.  相似文献   

11.
Chiral ITP of the weak base methadone using inverse cationic configurations with H+ as leading component and multiple isomer sulfated β‐CD (S‐β‐CD) as leading electrolyte (LE) additive, has been studied utilizing dynamic computer simulation, a calculation model based on steady‐state values of the ITP zones, and capillary ITP. By varying the amount of acidic S‐β‐CD in the LE composed of 3‐morpholino‐2‐hydroxypropanesulfonic acid and the chiral selector, and employing glycylglycine as terminating electrolyte (TE), inverse cationic ITP provides systems in which either both enantiomers, only the enantiomer with weaker complexation, or none of the two enantiomers form cationic ITP zones. For the configuration studied, the data reveal that only S‐methadone migrates isotachophoretically when the S‐β‐CD concentration in the LE is between about 0.484 and 1.113 mM. Under these conditions, R‐methadone migrates zone electrophoretically in the TE. An S‐β‐CD concentration between about 0.070 and 0.484 mM results in both S‐ and R‐methadone forming ITP zones. With >1.113 mM and < about 0.050 mM of S‐β‐CD in the LE both enantiomers are migrating within the TE and LE, respectively. Chiral inverse cationic ITP with acidic S‐β‐CD in the LE is demonstrated to permit selective ITP trapping and concentration of the less interacting enantiomer of a weak base.  相似文献   

12.
To improve resolution power of chiral selector and enantiomeric peak efficiency in CE, single isomer negatively charged β‐CD derivatives, mono(6‐deoxy‐6‐sulfoethylthio)‐β‐CD (SET‐β‐CD) bearing one negative charge and mono[6‐deoxy‐6‐(6‐sulfooxy‐5,5‐bis‐sulfooxymethyl)hexylthio]‐β‐CD (SMHT‐β‐CD) carrying three negative charges, were synthesized. The structure of these two β‐CD derivatives was confirmed by 1H NMR and MS. SET‐β‐CD and SMHT‐β‐CD successfully resolved the enantiomers of several basic model compounds. SMHT‐β‐CD provided for a significantly greater enantioseparation than SET‐β‐CD at lower concentrations. This appears to be due to the higher binding affinity of SMHT‐β‐CD to the model compounds and the wider separation window resulting from an increased countercurrent mobility of the selector. Overall, the new chiral selectors provided enantioseparations with high peak efficiency while avoiding peak distortion due to polydispersive and electrodispersive effects. The information obtained from an apparent binding constant study suggested that the enantioseparation of the model compounds followed the predictions of charged resolving agent migration model and that the observed degree of enantioseparation difference were due to the magnitude of differences in both enantiomer‐chiral selector binding affinities (ΔK) and the mobilities of the complexed enantiomers (Δμc).  相似文献   

13.
Binding constants for the enantiomers of modafinil with the negatively charged chiral selector sulfated‐β‐CD (S‐β‐CD) using CE technique is presented. The calculations of the binding constants employing three different linearization plots (double reciprocal, X‐reciprocal and Y‐reciprocal) were performed from the electrophoretic mobility values of modafinil enantiomers at different concentrations of S‐β‐CD in the BGE. The highest inclusion affinity of the modafinil enantiomers were observed for the S‐enantiomer–S‐β‐CD complex, in agreement with the computational calculations performed previously. Binding constants for each enantiomer–S‐β‐CD complex at different temperatures, as well as thermodynamic parameters for binding, were calculated. Host–guest binding constants using the double reciprocal fit showed better linearity (r2>0.99) at all temperatures studied (15–30°C) and compared with the other two fit methods. The linear van't Hoff (15–30°C) plot obtained indicated that the thermodynamic parameters of complexation were temperature dependent for the enantiomers.  相似文献   

14.
In this study, the enantioseparation of zopiclone, repaglinide, chlorphenamine maleate, brompheniramine maleate, dioxopromethazine hydrochloride, promethazine hydrochloride, liarozole, carvedilol, homatropine hydrobromide, homatropine methylbromide, venlafaxine, and sibutramine hydrochloride has been investigated using β‐CD in combination with a chiral ionic liquid (IL), 1‐ethyl‐3‐methylimidazolium‐L‐lactate. The influence of the type of IL and its concentration, BGE pH, and chain length of the IL cations on the resolution are discussed. Finally, the proposed method was successfully applied for the chiral impurity determination of eszopiclone in pharmaceutical tablets after validation with respect to accuracy and precision, linearity range, selectivity, repeatability, LOD and LOQ. It is assessed that the chiral impurity determination in the commercial tables is fewer than 0.1%.  相似文献   

15.
The CE method employing an indirect UV detection for the enantioseparation of 1,3‐dimethylamylamine (DMAA), widely used in various preworkout and dietary supplements labeled as a constituent of geranium extract has been developed. The dual‐selector system consisting of negatively charged sulfated α‐CD (1.1% w/v) and sulfated β‐CD (0.2% w/v) in 5 mM phosphate/Tris buffer (pH 3.0) containing the addition of 10 mM benzyltriethylammonium chloride (BTEAC) as the chromophoric additive was used for the enantiomeric separation of DMAA stereoisomers with the LODs in the range of 7.82–9.24 μg/mL. The method was partly validated and applied for the determination of the stereoisomeric composition of DMAA in commercial dietary supplements to verify the potential natural origin of DMAA.  相似文献   

16.
The methods for the enantioseparation of m‐nisoldipine, a new 1,4‐dihydropyridine calcium ion antagonist, were developed. The elaborated methods of m‐nisoldipine enantiomers separation were successfully performed using an anionic CD–sulfobutyl ether‐β‐CD (SBE‐β‐CD) or carboxymethyl‐β‐CD as chiral selector. However, the results indicated that SBE‐β‐CD was a better chiral selector for enantioseparation of the neutral m‐nisoldipine. Furthermore, comparing the two SBE‐β‐CDs, the derivative with a higher degree of substitution (DS) of 7.0 induced better enantioresolution than the one with low DS (4.0). In addition, possible chiral recognition mechanisms of dihydropyridines were discussed.  相似文献   

17.
A method for the determination of tartaric acid enantiomers using CE with contactless conductivity detection has been developed. Cu(II) as a central metal ion together with l ‐hydroxyproline were used as a chiral selector, the BGE was composed of 7 mM CuCl2, 14 mM trans‐4‐hydroxy‐l ‐proline, and 100 mM ε‐aminocaproic acid; the pH was adjusted to 5 by hydrochloric acid. Separation with a resolution of 1.9 was achieved in 9 min in a polyacrylamide‐coated capillary to suppress the EOF. Various counterions of the BGE were studied, and migration order reversal was achieved when switching from ε‐aminocaproic acid to l ‐histidine. With detection limits of about 20 μM, the method was applied to the analysis of wine and grape samples; only l ‐tartaric acid was found.  相似文献   

18.
Nanoparticles (NPs) can be used as pseudostationary phases (PSPs) in EKC, which is similar to the use of micelle additives as applied in MEKC. To date, the use of NPs to enhance enantiomeric separation by EKC with β‐CD or its derivative as chiral selector has been reported only in two papers. However, to the best of our knowledge, there has been no prior effort to use NPs for achieving enantioseparation with polysaccharides as chiral selector. This paper describes for the first time the use of carbon nanoparticles (CNPs) as PSPs to modify chiral separation system employing dextrin as chiral selector for the enantioseparations of several basic drugs in capillary EKC. Three different types of CNPs, including carbogenic nanoparticles (NPs), carboxylated single‐walled carbon nanotubes, and carboxylated multiwalled carbon nanotubes, were used as running buffer additives, respectively. The potential of the PSPs and the effects of dextrin concentration, buffer pH, and buffer concentration on the enantioseparations were evaluated. Four pairs of tested enantiomers were successfully resolved in less than 15 min with the resolution values in the range of 1.41–4.52 under optimized conditions. Compared to the buffer without NPs, the introduction of NPs into the buffer enhanced the separation of the enantiomers.  相似文献   

19.
Herein we present the enantioseparation of 10 cardiovascular agents and six bronchiectasis drugs including propranolol, carteolol, metoprolol, atenolol, pindolol, esmolol, bisoprolol, bevantolol, arotinolol, sotalol, clenbuterol, procaterol, bambuterol, tranterol, salbutamol and terbutaline sulfate using carboxymethyl‐β ‐cyclodextrin (CM‐β ‐CD) as chiral selector. To our knowledge, there is no literature about using CM‐β ‐CD for separating carteolol, esmolol, bisoprolol, bevantolol, arotinolol, procaterol, bambuterol and tranterol. During the course of work, changes in pH, CM‐β ‐CD concentration, buffer type and concentration were studied in relation to chiral resolution. Excellent enantiomeric separations were obtained for all 16 compounds, especially for procaterol. An impressive resolution value, up to 17.10, was obtained. In particular, most of them achieved rapid separations within 20 min. Given the fact that enantioseparation results rely on analytes' structural characters, the possible separation mechanisms were discussed. In addition, in order to obtain faster separation for propranolol enantiomers in practical application, the effective length of capillary was innovatively shortened from 45 to 30 cm. After the validation, the method was successfully applied to the enantiomeric purity determination of propranolol in the formulation of drug substances.  相似文献   

20.
Wang Z  Wang J  Hu Z  Kang J 《Electrophoresis》2007,28(6):938-943
An approach for improving the separation performance of the enantioseparation by CE with vancomycin as chiral selector is described. In the present method, a solution of poly(dimethylacrylamide) (PDMA) was used for dynamic coating of the capillary wall to minimize the adsorption of vancomycin onto the capillary wall, and to depress the EOF. Compared with the bare fused-silica capillaries and the capillaries coated with the polycationic polymer hexadimethrine bromide (HDB), the PDMA-coated capillary displayed the best separation performance. The resulting coating could withstand hundreds of runs without losing its function. Moreover, a partial filling technique was applied to avoid interference in detection caused by the presence of vancomycin in the buffer. The separation time was shortened when a short-end-injection technique was applied. Several parameters such as buffer pH, vancomycin concentration and plug length of the vancomycin solution for the separation were optimized. Under the optimal conditions, all tested enantiomers, including FMOC amino acids derivatives, ketoprofen and fenoprofen, were baseline-separated in less than 4.2 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号