首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multinuclear (31P and 79/81Br), multifield (9.4, 11.75, and 21.1 T) solid‐state nuclear magnetic resonance experiments are performed for seven phosphonium bromides bearing the triphenylphosphonium cation, a molecular scaffold found in many applications in chemistry. This is undertaken to fully characterise their bromine electric field gradient (EFG) tensors, as well as the chemical shift (CS) tensors of both the halogen and the phosphorus nuclei, providing a rare and novel insight into the local electronic environments surrounding them. New crystal structures, obtained from single‐crystal X‐ray diffraction, are reported for six compounds to aid in the interpretation of the NMR data. Among them is a new structure of BrPPh4, because the previously reported one was inconsistent with our magnetic resonance data, thereby demonstrating how NMR data of non‐standard nuclei can correct or improve X‐ray diffraction data. Our results indicate that, despite sizable quadrupolar interactions, 79/81Br magnetic resonance spectroscopy is a powerful characterisation tool that allows for the differentiation between chemically similar bromine sites, as shown through the range in the characteristic NMR parameters. 35/37Cl solid‐state NMR data, obtained for an analogous phosphonium chloride sample, provide insight into the relationship between unit cell volume, nuclear quadrupolar coupling constants, and Sternheimer antishielding factors. The experimental findings are complemented by gauge‐including projector‐augmented wave (GIPAW) DFT calculations, which substantiate our experimentally determined strong dependence of the largest component of the bromine CS tensor, δ11, on the shortest Br? P distance in the crystal structure, a finding that has possible application in the field of NMR crystallography. This trend is explained in terms of Ramsey’s theory on paramagnetic shielding. Overall, this work demonstrates how careful NMR studies of underexploited exotic nuclides, such as 79/81Br, can afford insights into structure and bonding environments in the solid state.  相似文献   

2.
Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods.  相似文献   

3.
Precise theoretical predictions of NMR parameters are helpful for the spectroscopic identification of complicated biological molecules, especially for the carbon shielding tensors in amino acids. The (13)C shielding tensors of various crystalline amino acids and peptides have been calculated using the gauge-including projector augmented wave (GIPAW) method based on two different periodic structure models, namely that deduced from available crystallographic data and that from theoretically optimized structures. The incorporation of surrounding lattice effects is found to be crucial in obtaining reliable predictions of (13)C shielding tensors that are comparable to the experimental data. This is accomplished by refining the experimental crystallographic data of the amino acids and peptides at the GGA/PBE level by which more accurate intramolecular C--H bond lengths and intermolecular hydrogen-bonding interactions are obtained. Accordingly, more accurate predictions of (13)C shielding tensors comparable to the experimental results (within a maximum deviation of +/-10 ppm) were achieved, rendering more explicit (13)C shielding tensors assignments for solid biological systems particularly for amino acids with multiple carboxyl carbons, such as asparagine, glutamine, and glutamic acid.  相似文献   

4.
Nine arylboronic acids, seven arylboronic catechol cyclic esters, and two trimeric arylboronic anhydrides (boroxines) are investigated using 11B solid‐state NMR spectroscopy at three different magnetic field strengths (9.4, 11.7, and 21.1 T). Through the analysis of spectra of static and magic‐angle spinning samples, the 11B electric field gradient and chemical shift tensors are determined. The effects of relaxation anisotropy and nutation field strength on the 11B NMR line shapes are investigated. Infrared spectroscopy was also used to help identify peaks in the NMR spectra as being due to the anhydride form in some of the arylboronic acid samples. Seven new X‐ray crystallographic structures are reported. Calculations of the 11B NMR parameters are performed using cluster model and periodic gauge‐including projector‐augmented wave (GIPAW) density functional theory (DFT) approaches, and the results are compared with the experimental values. Carbon‐13 solid‐state NMR experiments and spectral simulations are applied to determine the chemical shifts of the ipso carbons of the samples. One bond indirect 13C‐11B spin‐spin (J) coupling constants are also measured experimentally and compared with calculated values. The 11B/10B isotope effect on the 13C chemical shift of the ipso carbons of arylboronic acids and their catechol esters, as well as residual dipolar coupling, is discussed. Overall, this combined X‐ray, NMR, IR, and computational study provides valuable new insights into the relationship between NMR parameters and the structure of boronic acids and esters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
29Si and 31P magnetic‐shielding tensors in covalent network solids have been evaluated using periodic and cluster‐based calculations. The cluster‐based computational methodology employs pseudoatoms to reduce the net charge (resulting from missing co‐ordination on the terminal atoms) through valence modification of terminal atoms using bond‐valence theory (VMTA/BV). The magnetic‐shielding tensors computed with the VMTA/BV method are compared to magnetic‐shielding tensors determined with the periodic GIPAW approach. The cluster‐based all‐electron calculations agree with experiment better than the GIPAW calculations, particularly for predicting absolute magnetic shielding and for predicting chemical shifts. The performance of the DFT functionals CA‐PZ, PW91, PBE, rPBE, PBEsol, WC, and PBE0 are assessed for the prediction of 29Si and 31P magnetic‐shielding constants. Calculations using the hybrid functional PBE0, in combination with the VMTA/BV approach, result in excellent agreement with experiment. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Experimental 13C solid-state magic-angle spinning (MAS) Nuclear Magnetic Resonance (NMR) as well as Density-Functional Theory (DFT) gauge-including projector augmented wave (GIPAW) calculations were used to probe disorder and local mobility in diethylcarbamazine citrate, (DEC)+(citrate). This compound has been used as the first option drug for the treatment of filariasis, a disease endemic in tropical countries and caused by adult worms of Wuchereria bancrofti, which is transmitted by mosquitoes. We firstly present 2D 13C─1H dipolar-coupling-mediated heteronuclear correlation spectra recorded at moderate spinning frequency, to explore the intermolecular interaction between DEC and citrate molecules. Secondly, we investigate the dynamic behavior of (DEC)+(citrate) by varying the temperature and correlating the experimental MAS NMR results with DFT GIPAW calculations that consider two (DEC)+ conformers (in a 70:30 ratio) for crystal structures determined at 293 and 235 K. Solid-state NMR provides insights on slow exchange dynamics revealing conformational changes involving particularly the DEC ethyl groups.  相似文献   

7.
This paper compares the absolute shieldings obtained by gauge‐including‐projected‐augmented‐wave (GIPAW) to those obtained by gauge‐invariant atomic orbital/Becke, 3‐parameter, Lee‐Yang‐Parr (GIAO/B3LYP)/6–311++G(d,p)‐polarizable continuum model (PCM, dimethyl sulfoxide) for nine benzazoles (benzimidazoles, indazoles, and benzotriazoles) recorded in the solid‐state. Three nuclei were explored, 13C, 15N, and 19F, and the gauge‐including‐projected‐augmented‐wave approach only proved better for 15N MAS NMR.  相似文献   

8.
Solid-state 95Mo NMR spectroscopy is shown to be an efficient and effective tool for analyzing the diamagnetic octacyanomolybdate(IV) anions, Mo(CN)(8)4-, of approximate dodecahedral, D(2d), and square antiprismatic, D(4d), symmetry. The sensitivity of the Mo magnetic shielding (sigma) and electric field gradient (EFG) tensors to small changes in the local structure of these anions allows the approximate D(2d) and D(4d) Mo(CN)(8)4- anions to be readily distinguished. The use of high applied magnetic fields, 11.75, 17.63 and 21.1 T, amplifies the overall sensitivity of the NMR experiment and enables more accurate characterization of the Mo sigma and EFG tensors. Although the magnitudes of the Mo sigma and EFG interactions are comparable for the D(2d) and D(4d) Mo(CN)(8)4- anions, the relative values and orientations of the principal components of the Mo sigma and EFG tensors give rise to 95Mo NMR line shapes that are significantly different at the fields utilized here. Quantum chemical calculations of the Mo sigma and EFG tensors, using zeroth-order regular approximation density functional theory (ZORA DFT) and restricted Hartree-Fock (RHF) methods, have also been carried out and are in good agreement with experiment. The most significant and surprising result from the DFT and RHF calculations is a significant EFG at Mo for an isolated Mo(CN)(8)4- anion possessing an ideal square antiprismatic structure; this is contrary to the point-charge approximation, PCA, which predicts a zero EFG at Mo for this structure.  相似文献   

9.
Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well‐developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear (13C, 14/15N, 19F, and 127I) solid‐state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen‐bonded co‐crystalline product materials. Single‐crystal X‐ray diffraction (XRD) structures of three novel co‐crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N+(CH2)10N+(CH3)3][2 I?]) and different para‐dihalogen‐substituted benzene moieties (i.e., p‐C6X2Y4, X=Br, I; Y=H, F) are presented. 13C and 15N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co‐crystal complexes in the solid state. Long‐range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using 14N NMR spectroscopy, with a systematic decrease in the 14N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at 127I solid‐state NMR spectroscopy experiments are presented and variable‐temperature 19F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge‐including projector augmented‐wave (GIPAW) or relativistic zeroth‐order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond.  相似文献   

10.
A series of transition‐metal organometallic complexes with commonly occurring metal? chlorine bonding motifs were characterized using 35Cl solid‐state NMR (SSNMR) spectroscopy, 35Cl nuclear quadrupole resonance (NQR) spectroscopy, and first‐principles density functional theory (DFT) calculations of NMR interaction tensors. Static 35Cl ultra‐wideline NMR spectra were acquired in a piecewise manner at standard (9.4 T) and high (21.1 T) magnetic field strengths using the WURST‐QCPMG pulse sequence. The 35Cl electric field gradient (EFG) and chemical shielding (CS) tensor parameters were readily extracted from analytical simulations of the spectra; in particular, the quadrupolar parameters are shown to be very sensitive to structural differences, and can easily differentiate between chlorine atoms in bridging and terminal bonding environments. 35Cl NQR spectra were acquired for many of the complexes, which aided in resolving structurally similar, yet crystallographically distinct and magnetically inequivalent chlorine sites, and with the interpretation and assignment of 35Cl SSNMR spectra. 35Cl EFG tensors obtained from first‐principles DFT calculations are consistently in good agreement with experiment, highlighting the importance of using a combined approach of theoretical and experimental methods for structural characterization. Finally, a preliminary example of a 35Cl SSNMR spectrum of a transition‐metal species (TiCl4) diluted and supported on non‐porous silica is presented. The combination of 35Cl SSNMR and 35Cl NQR spectroscopy and DFT calculations is shown to be a promising and simple methodology for the characterization of all manner of chlorine‐containing transition‐metal complexes, in pure, impure bulk and supported forms.  相似文献   

11.
Solid-state nuclear magnetic resonance (NMR) parameters of 17O, 14N/15N, and 2H/1H nuclei were evaluated in two available neutron crystalline structures of N-methylacetamide (NMA) at 250 and 276 K, NMA-I and NMA-II, respectively. Density functional theory calculations were performed by B3LYP method and 6-311++G** and IGLO-II type basis sets to calculate the electric field gradient (EFG) and chemical shielding (CS) tensors at the sites of mentioned nuclei. In order to investigate hydrogen bonds (HBs) effects on NMR tensors, calculations were performed on four-model systems of NMA: an optimized isolated gas-phase, crystalline monomers, crystalline dimers, and crystalline trimers. Comparing the calculated results reveal the influence of N–H···O=C and C–H···O=C HB types on the NMR tensors which are observable by the evaluated parameters including quadrupole coupling constant, C Q, and isotropic CS, σ iso. Furthermore, the results demonstrate more influence of HB on the EFG and CS tensors of NMA at 276 K rather than that of 250 K.  相似文献   

12.
DFT calculations of electric field gradient (EFG) tensors at the sites of 14N, 17O, and 2H nuclei are carried out to characterize the hydrogen bond (HB) interactions in the sulfapyridine crystal structure. One-molecule (monomer) and hydrogen-bonded hexameric cluster models of sulfapyridine are constructed according to available X-ray coordinates where the proton positions are optimized. Then, EFG tensors are calculated for both monomer and target molecule in the hexameric cluster of sulfapyridine to show the effect of HB interactions on the tensors. The calculated EFG tensors are converted to the experimentally measurable nuclear quadrupole resonance (NQR) parameters: quadrupole coupling constant (C Q ) and asymmetry parameter (η Q ). The results reveal different contribution of various nuclei to N-H⋯N and N-H⋯O HB interactions in the cluster where the N2 and O1 have major contributions. The computations are performed with B3LYP and B3PW91 functionals DFT method and 6-311+G* and 6-311++G** standard basis sets using the Gaussian 98 package.  相似文献   

13.
13C, 14N, 15N, 17O, and 35Cl NMR parameters, including chemical shift tensors and quadrupolar tensors for 14N, 17O, and 35Cl, are calculated for the crystalline forms of various amino acids under periodic boundary conditions and complemented by experiment where necessary. The 13C shift tensors and 14N electric field gradient (EFG) tensors are in excellent agreement with experiment. Similarly, static 17O NMR spectra could be precisely simulated using the calculation of the full chemical shift (CS) tensors and their relative orientation with the EFG tensors. This study allows correlations to be found between hydrogen bonding in the crystal structures and the 17O NMR shielding parameters and the 35Cl quadrupolar parameters, respectively. Calculations using the two experimental structures for L-alanine have shown that, while the calculated isotropic chemical shift values of 13C and 15N are relatively insensitive to small differences in the experimental structure, the 17O shift is markedly affected.  相似文献   

14.
Lanthanum‐139 NMR spectra of stationary samples of several solid LaIII coordination compounds have been obtained at applied magnetic fields of 11.75 and 17.60 T. The breadth and shape of the 139La NMR spectra of the central transition are dominated by the interaction between the 139La nuclear quadrupole moment and the electric field gradient (EFG) at that nucleus; however, the influence of chemical‐shift anisotropy on the NMR spectra is non‐negligible for the majority of the compounds investigated. Analysis of the experimental NMR spectra reveals that the 139La quadrupolar coupling constants (CQ) range from 10.0 to 35.6 MHz, the spans of the chemical‐shift tensor (Ω) range from 50 to 260 ppm, and the isotropic chemical shifts (δiso) range from ?80 to 178 ppm. In general, there is a correlation between the magnitudes of CQ and Ω, and δiso is shown to depend on the La coordination number. Magnetic‐shielding tensors, calculated by using relativistic zeroth‐order regular approximation density functional theory (ZORA‐DFT) and incorporating scalar only or scalar plus spin–orbit relativistic effects, qualitatively reproduce the experimental chemical‐shift tensors. In general, the inclusion of spin–orbit coupling yields results that are in better agreement with those from the experiment. The magnetic‐shielding calculations and experimentally determined Euler angles can be used to predict the orientation of the chemical‐shift and EFG tensors in the molecular frame. This study demonstrates that solid‐state 139La NMR spectroscopy is a useful characterization method and can provide insight into the molecular structure of lanthanum coordination compounds.  相似文献   

15.
We have presented an experimental investigation of the oxygen-17 chemical shielding (CS) and electric-field-gradient (EFG) tensors for alpha-COOH groups in polycrystalline amino acid hydrochlorides. The 17O CS and EFG tensors including the relative orientations between the two NMR tensors are determined in [17O]-L-phenylalanine hydrochloride and [17O]-L-valine hydrochloride by the analysis of the 17O magic-angle-spinning (MAS) and stationary NMR spectra obtained at 9.4, 11.7, 16.4, and 21.8 T. The quadrupole coupling constants (CQ) and the span of the CS tensors are found to be 8.41-8.55 MHz and 7.35-7.41MHz, and 548-570 ppm and 225-231 ppm, for carbonyl and hydroxyl oxygen atoms, respectively. Extensive quantum chemical calculations using density functional theory (DFT) have been also carried out for a hydrogen-bonding model. It is demonstrated that the behavior of the dependence of hydrogen-bond distances on 17O NMR tensors for the halogen ions is different from those for the water molecule.  相似文献   

16.
First-principles density functional theory oxygen chemical shift tensors were calculated for A(B,B')O(3) perovskite alloys Pb(Zr(1/2)Ti(1/2))O(3) (PZT) and Pb(Mg(1/3)Nb(2/3))O(3) (PMN). Quantum chemistry methods for embedded clusters and the gauge including projector augmented waves (GIPAW) method [C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001)] for periodic boundary conditions were used. Results from both methods are in good agreement for PZT and prototypical perovskites. PMN results were obtained using only GIPAW. Both isotropic δ(iso) and axial δ(ax) chemical shifts were found to vary approximately linearly as a function of the nearest-distance transition-metal/oxygen bond length, r(s). Using these results, we argue against Ti clustering in PZT, as conjectured from recent (17)O NMR magic-angle-spinning measurements. Our findings indicate that (17)O NMR measurements, coupled with first-principles calculations, can be an important probe of local structure in complex perovskite solid solutions.  相似文献   

17.
Trends in the chlorine chemical shift (CS) tensors of amino acid hydrochlorides are investigated in the context of new data obtained at 21.1 T and extensive quantum chemical calculations. The analysis of chlorine-35/37 NMR spectra of solid L-tryptophan hydrochloride obtained at two magnetic field strengths yields the chlorine electric field gradient (EFG) and CS tensors, and their relative orientations. The chlorine CS tensor is also determined for the first time for DL-arginine hydrochloride monohydrate. The drastic influence of 1H decoupling at 21.1 T on the spectral features of salts with particularly small 35Cl quadrupolar coupling constants (CQ) is demonstrated. The chlorine CS tensor spans (Omega) of hydrochloride salts of hydrophobic amino acids are found to be larger than those for salts of hydrophilic amino acids. A new combined experimental-theoretical procedure is described in which quantum chemical geometry optimizations of hydrogen-bonded proton positions around the chloride ions in a series of amino acid hydrochlorides are cross-validated against the experimental chlorine EFG and CS tensor data. The conclusion is reached that the relatively computationally inexpensive B3LYP/3-21G* method provides proton positions which are suitable for subsequent higher-level calculations of the chlorine EFG tensors. The computed value of is less sensitive to the proton positions. Following this cross-validation procedure, /CQ(35Cl)/ is generally predicted within 15% of the experimental value for a range of HCl salts. The results suggest the applicability of chlorine NMR interaction tensors in the refinement of proton positions in structurally similar compounds, e.g., chloride ion channels, for which neutron diffraction data are unavailable.  相似文献   

18.
Metal NMR shielding and electric‐field gradient (EFG) tensors are examined by quantum‐chemical calculations for a set of 14 titanium(IV) complexes. Benchmarks are performed for titanocene chlorides that have been characterized recently by solid‐state NMR experiments, focusing on the dependence of TiIV NMR parameters on the computational model in terms of the choice of the density functional, and considering molecular clusters versus infinite‐periodic solid. Nearest‐neighbor and long‐range effects in the solid state are found to influence NMR parameters in systems without spatially extended ligands. Bulky ligands increase the fraction of local structure and bonding information encoded in the EFG tensors by reducing intermolecular interactions. Next, Ti shielding constants and EFG tensors for a variety of olefin (co)polymerization catalysts are analyzed in terms of contributions from localized molecular orbitals representing Lewis bonds and lone pairs. Direct links between the observed theoretical trends and the local bonding environment around the Ti metal center are found. A specific dependence of the Ti EFG tensors on the exact arrangement and type of surrounding bonds is demonstrated, providing a basis for further studies on solid‐supported titanium catalytic systems.  相似文献   

19.
This paper presents an NMR crystallography study of three polymorphs of furosemide. Experimental magic-angle spinning (MAS) solid-state NMR spectra are reported for form I of furosemide, and these are assigned using density-functional theory (DFT)-based gauge-including projector augmented wave (GIPAW) calculations. Focusing on the three known polymorphs, we examine the changes to the NMR parameters due to crystal packing effects. We use a recently developed formalism to visualise which regions are responsible for the chemical shielding of particular sites and hence understand the variation in NMR parameters between the three polymorphs.  相似文献   

20.
Hydrogen-bonding effects in the real crystalline structure of 9-methyladenine, 9-MA, were studied using calculated electric field gradient, EFG, and chemical shielding, CS, tensors for nitrogen and hydrogen nuclei via density functional theory. The calculations were carried out at the B3LYP and B3PW91 levels with the 6-311++G basis set via the Gaussian 98 package. Nuclear quadrupole coupling constants, C(Q), and asymmetry parameters, eta(Q), are reported for (14)N and (2)H. The chemical shielding anisotropy, Deltasigma, and chemical shielding isotropy, sigma(iso), are also reported for (15)N and (1)H. The difference between the calculated parameters of the monomer and heptameric layer-like cluster 9-MA shows how much H-bonding interactions affect the EFG and CS tensors of each nucleus. This result indicates that N(10) (imino nitrogen) has a major role in H-bonding interactions, whereas that of N(9) is negligible. There is good agreement between the present calculated parameters and reported experimental data. Although some discrepancies were observed, this could be attributed to the different conditions which were applied for calculation and the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号