首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Triply‐bridging bis‐{hydrido(borylene)} and bis‐borylene species of groups 6, 8 and 9 transition metals are reported. Mild thermolysis of [Fe2(CO)9] with an in situ produced intermediate, generated from the low‐temperature reaction of [Cp*WCl4] (Cp*=η5‐C5Me5) and [LiBH4?THF] afforded triply‐bridging bis‐{hydrido(borylene)}, [(μ3‐BH)2H2{Cp*W(CO)2}2{Fe(CO)2}] ( 1 ) and bis‐borylene, [(μ3‐BH)2{Cp*W(CO)2}2{Fe(CO)3}] ( 2 ). The chemical bonding analyses of 1 show that the B?H interactions in bis‐{hydrido (borylene)} species is stronger as compared to the M?H ones. Frontier molecular orbital analysis shows a significantly larger energy gap between the HOMO‐LUMO for 2 as compared to 1 . In an attempt to synthesize the ruthenium analogue of 1 , a similar reaction has been performed with [Ru3(CO)12]. Although we failed to get the bis‐{hydrido(borylene)} species, the reaction afforded triply‐bridging bis‐borylene species [(μ3‐BH)2{WCp*(CO)2}2{Ru(CO)3}] ( 2′ ), an analogue of 2 . In search for the isolation of bridging bis‐borylene species of Rh, we have treated [Co2(CO)8] with nido‐[(RhCp*)2(B3H7)], which afforded triply‐bridging bis‐borylene species [(μ3‐BH)2(RhCp*)2Co2(CO)4(μ‐CO)] ( 3 ). All the compounds have been characterized by means of single‐crystal X‐ray diffraction study; 1H, 11B, 13C NMR spectroscopy; IR spectroscopy and mass spectrometry.  相似文献   

2.
The bis(hydride) dimolybdenum complex, [Mo2(H)2{HC(N‐2,6‐iPr2C6H3)2}2(thf)2], 2 , which possesses a quadruply bonded Mo2II core, undergoes light‐induced (365 nm) reductive elimination of H2 and arene coordination in benzene and toluene solutions, with formation of the MoI2 complexes [Mo2{HC(N‐2,6‐iPr2C6H3)2}2(arene)], 3?C6H6 and 3?C6H5Me , respectively. The analogous C6H5OMe, p‐C6H4Me2, C6H5F, and p‐C6H4F2 derivatives have also been prepared by thermal or photochemical methods, which nevertheless employ different Mo2 complex precursors. X‐ray crystallography and solution NMR studies demonstrate that the molecule of the arene bridges the molybdenum atoms of the MoI2 core, coordinating to each in an η2 fashion. In solution, the arene rotates fast on the NMR timescale around the Mo2‐arene axis. For the substituted aromatic hydrocarbons, the NMR data are consistent with the existence of a major rotamer in which the metal atoms are coordinated to the more electron‐rich C?C bonds.  相似文献   

3.
[Mn4O4{O2P(OtBu)2}6] ( 1 ), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen‐evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen‐atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O‐atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X‐ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to MnII species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin=pinacolate) is described.  相似文献   

4.
Reaction of 7‐{(N‐2,6‐R)iminomethyl)}indole ( HL1 , R = dimethylphenyl; HL2 , R = diisopropylphenyl) and rare‐earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2, generated new rare‐earth metal bis(alkyl) complexes LLn(CH2SiMe3)2(THF) [L = L1: Ln = Lu ( 1a ), Sc ( 1b ); L = L2: Ln = Lu ( 3a ), Sc ( 3b )] and mono(alkyl) complexes L22Lu(CH2SiMe3) ( 4a ). Treatment of alkyl complexes 1a and 4a with N,N′‐diisopropylcarbodiimide afforded the corresponding amidinates L1Lu{iPr2NC(CH2SiMe3)NiPr2}2 ( 2a ) and L22Lu{iPr2NC(CH2SiMe3)NiPr2} ( 5a ), respectively. These new rare‐earth metal alkyls and amidinates except 4a in combination with aluminum alkyls and borate generated efficient homogeneous catalysts for the polymerization of isoprene, providing high cis‐1,4 selectivity and high molar mass polyisoprene with narrow molar mass distribution (Mn = 2.65 × 105, Mw/Mn = 1.07, cis‐1,4 98.2%, −60 °C). The environmental hindrance around central metals arising from the bulkiness of the ligands, the Lewis‐acidity of rare‐earth metal ions, the types of aluminum tris(alkyl)s and borate, and polymerization temperature influenced significantly on both the catalytic activity and the regioselectivity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5251–5262, 2008  相似文献   

5.
A variety of very bulky amido magnesium iodide complexes, LMgI(solvent)0/1 and [LMg(μ‐I)(solvent)0/1]2 (L=‐N(Ar)(SiR3); Ar=C6H2{C(H)Ph2}2R′‐2,6,4; R=Me, Pri, Ph, or OBut; R′=Pri or Me) have been prepared by three synthetic routes. Structurally characterized examples of these materials include the first unsolvated amido magnesium halide complexes, such as [LMg(μ‐I)]2 (R=Me, R′=Pri). Reductions of several such complexes with KC8 in the absence of coordinating solvents have afforded the first two‐coordinate magnesium(I) dimers, LMg?MgL (R=Me, Pri or Ph; R′=Pri, or Me), in low to good yields. Reductions of two of the precursor complexes in the presence of THF have given the related THF adduct complexes, L(THF)Mg?Mg(THF)L (R=Me; R′=Pri) and LMg?Mg(THF)L (R=Pri; R′=Me) in trace yields. The X‐ray crystal structures of all magnesium(I) complexes were obtained. DFT calculations on the unsolvated examples reveal their Mg?Mg bonds to be covalent and of high s‐character, while Ph???Mg bonding interactions in the compounds were found to be weak at best.  相似文献   

6.
Novel silylation reactions at [Ge9] Zintl clusters starting from the chlorosilanes SiR3Cl (R = iBu, iPr, Et) and the Zintl phase K4Ge9 are reported. The formation of the tris‐silylated anions [Ge9(SiR3)3] [R = iBu ( 1a ), iPr ( 1b ), Et ( 1c )] by heterogeneous reactions in acetonitrile was monitored by ESI‐MS measurements. For R = iBu 1H, 13C and 29Si NMR experiments confirmed the exclusive formation of 1a . Subsequent reactions of 1a with CuNHCDippCl and Au(PPh3)Cl result in formation of the neutral metal complex (CuNHCDipp)[Ge9{Si(iBu)3}3]·0.5 tol ( 2 ·0.5 tol) and the metal bridged dimeric unit {Au[Ge9{Si(iBu)3}3]2} ( 3a ), isolated as a (K‐18c6)+ salt in (K‐18c6)Au[Ge9{Si(iBu)3}3]2·tol ( 3 ·tol), respectively. Finally, from a toluene/hexane solution of 1a in presence of 18‐crown‐6, crystals of the compound (K‐18c6)2[Ge9{Si(iBu)3}2]·tol ( 4 ·tol), containing the bis‐silylated cluster anion [Ge9(Si(iBu)3)2]2– ( 4a ), were obtained. The compounds 2 ·0.5 tol, 3 ·tol and 4 ·tol were characterized by single‐crystal structure determination.  相似文献   

7.
Anionic two‐coordinate complexes of first‐row transition‐metal(I) centres are rare molecules that are expected to reveal new magnetic properties and reactivity. Recently, we demonstrated that a N(SiMe3)2? ligand set, which is unable to prevent dimerisation or extraneous ligand coordination at the +2 oxidation state of iron, was nonetheless able to stabilise anionic two‐coordinate FeI complexes even in the presence of a Lewis base. We now report analogous CrI and CoI complexes with exclusively this amido ligand and the isolation of a [MnI{N(SiMe3)2}2]22? dimer that features a Mn?Mn bond. Additionally, by increasing the steric hindrance of the ligand set, the two‐coordinate complex [MnI{N(Dipp)(SiMe3)}2]? was isolated (Dipp=2,6‐iPr2‐C6H3). Characterisation of these compounds by using X‐ray crystallography, NMR spectroscopy, and magnetic susceptibility measurements is provided along with ligand‐field analysis based on CASSCF/NEVPT2 ab initio calculations.  相似文献   

8.
The synthesis, reactivity, and properties of boryl‐functionalized σ‐alkynyl and vinylidene rhodium complexes such as trans‐[RhCl(?C?CHBMes2)(PiPr3)2] and trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2] are reported. An equilibrium was found to exist between rhodium vinylidene complexes and the corresponding hydrido σ‐alkynyl complexes in solution. The complex trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2] (IMe=1,3‐dimethylimidazol‐2‐ylidene) was found to exhibit solvatochromism and can be quasireversibly oxidized and reduced electrochemically. Density functional calculations were performed to determine the reaction mechanism and to help rationalize the photophysical properties of trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2].  相似文献   

9.
We report on the synthesis of new derivatives of silylated clusters of the type [Ge9(SiR3)3]? (R = SiMe3, Me = CH3; R = Ph, Ph = C6H5) as well as on their reactivity towards copper and zinc compounds. The silylated cluster compounds were synthesized by heterogeneous reactions starting from the Zintl phase K4Ge9. Reaction of K[Ge9{Si(SiMe3)3}3] with ZnCl2 leads to the already known dimeric compound [Zn(Ge9{Si(SiMe3)3}3)2] ( 1 ), whereas upon the reaction with [ZnCp*2] the coordination of [ZnCp*]+ to the cluster takes place (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) under the formation of [ZnCp*(Ge9{Si(SiMe3)3}3)] ( 2 ). A similar reaction leads to [CuPiPr3(Ge9{Si(SiMe3)3}3)] ( 3 ) from [CuPiPr3Cl] (iPr=isopropyl). Further we investigated the novel silylated cluster units [Ge9(SiPh3)3]? ( 4 ) and [Ge9(SiPh3)2]? ( 5 ), which could be identified by mass spectroscopy. Bis‐ and tris‐silylated species can be synthesized by the respective stoichiometric reactions, and the products were characterized by ESI‐MS and NMR experiments. These clusters show rather different reactivity. The reaction of the tris‐silylated anion 4 with [CuPiPr3Cl] leads to [(CuPiPr3)3Ge9(SiPh3)2]+ as shown from NMR experiments and to [(CuPiPr3)4{Ge9(SiPh3)2}2] ( 6 ), which was characterized by single‐crystal X‐ray diffraction. Compound 6 shows a new type of coordination of the Cu atoms to the silylated Zintl clusters.  相似文献   

10.
A square‐planar Co4 amide cluster, Co4{N(SiMe3)2}4 ( 2 ), and an octahedral Co6 hydride cluster, Co6H8(PiPr3)6 ( 4 ), were obtained from metathesis‐type amide to hydride exchange reactions of a CoII amide complex with pinacolborane (HBpin) in the absence/presence of PiPr3. The crystal structure of 4 revealed face‐capping hydrides on each triangular [Co3] face, while the formal CoII2CoI4 oxidation state of 4 indicated a reduction of the cobalt centers during the assembly process. Cluster 4 catalyzes the hydrosilylation of 2‐cyclohexen‐1‐one favoring the conjugate reduction. Generation of the catalytically reactive Co cluster species was indicated by a trapping experiment with a chiral chelating agent.  相似文献   

11.
Three new complexes with phosphanylphosphido ligands, [Cu4{μ2‐P(SiMe3)‐PtBu}4] ( 1 ), [Ag4{μ2‐P(SiMe3)‐PtBu2}4] ( 2 ) and [Cu{η1‐P(SiMe3)‐PiPr2}2][Li(Diglyme)2]+ ( 3 ) were synthesized and structurally characterized by X‐ray diffraction, NMR spectroscopy, and elemental analysis. Complexes 1 and 2 were obtained in the reactions of lithium derivative of diphosphane tBu2P‐P(SiMe3)Li · 2.7THF with CuCl and [iBu3PAgCl]4, respectively. The X‐ray diffraction analysis revealed that the complexes 1 and 2 present macrocyclic, tetrameric form with Cu4P4 and Ag4P4 core. Complex 3 was prepared in the reaction of CuCl with a different derivative of lithiated diphosphane iPr2P‐P(SiMe3)Li · 2(Diglyme). Surprisingly, the X‐ray analysis of 3 revealed that in this reaction instead of the tetramer the monomeric form, ionic complex [Cu{η1‐P(SiMe3)‐PiPr2}2][Li(Diglyme)2]+ was formed.  相似文献   

12.
Chiral Gallium and Indium Alkoxometalates Li2(S)‐BINOLate ((S)‐BINOL = (S)‐(–)‐2,2′‐Dihydroxy‐1,1′‐binaphthyl) generated by dilithiation of (S)BINOL with two equivalents nBuLi was reacted with GaCl3 und InCl3 in THF to the alkoxometalates [{Li(THF)2}{Li(THF)}2{Ga((S)‐BINOLate)3}] ( 1 ) and [{Li(THF)2}2{Li(THF)}{In((S)‐BINOLate)3}] · [{Li(THF)2}{Li(THF)}2{In((S)‐ BINOLate)3}]2 ( 3 ), respectively. 1 and 3 crystallize from THF/toluene mixtures as 1 · 2 toluene and 3 · 8 toluene. The treatment of PhCH2GaCl2 with Li2(S)‐BINOLate in THF under reflux, followed by recrystallization of the product from DME gives the gallate [{Li(DME)}3{Ga((S)BINOLate)3}] · 1.5 THF ( 2 · 1.5 THF). 1 – 3 were characterized by NMR, IR and MS techniques. In addition, 1 · 2 toluene, 2 · 1.5 THF and 3 · 8 toluene were investigated by X‐ray structure analyses. According to them, a distorted octahedral coordination sphere around the group 13 metal was formed, built‐up by three BINOLate ligands. The three Li+ counter ions act as bridging units by metal‐oxygen coordination. The coordination sphere of the Li+ ions was completed, depending on the available space, by one or two THF ligands ( 1 · 2 toluene, 3 · 8 toluene) and one DME ligand ( 2 · 1.5 THF), respectively. The sterical dominance of the BINOLate ligands can be shown by the almost square‐planar coordination of the Li+ ions in 2 · 1.5 THF giving a small twisting angle of only 17°.  相似文献   

13.
The solid‐state structure of the title compound, [Na2Mn2(C32H56N2OSi2)2O2] or [1,8‐C10H6(NSiiPr3)2Mn(μ3‐O)Na(THF)]2, which lies across a crystallographic twofold axis, exhibits a central [Mn2O2Na2]4+ core, with two oxide groups, each triply bridging between the two MnIII ions and an Na+ ion. Additional coordination is provided to each MnIII centre by a 1,8‐C10H6(NSiiPr3)2 [1,8‐bis(triisopropylsilylamido)naphthalene] ligand and to the Na+ centres by a tetrahydrofuran molecule. The presence of an additional Na...H—C agostic interaction potentially contributes to the distortion around the bridging oxide group.  相似文献   

14.
New Copper Complexes Containing Phosphaalkene Ligands. Molecular Structure of [Cu{P(Mes*)C(NMe2)2}2]BF4 (Mes* = 2,4,6‐tBu3C6H2) Reaction of equimolar amounts of the inversely polarized phosphaalkene tBuP=C(NMe2)2 ( 1a ) and copper(I) bromide or copper(I) iodide, respectively, affords complexes [Cu3X3{μ‐P(tBu)C(NMe2)2}3] ( 2 ) (X =Br) and ( 3 ) (X = I) as the formal result of the cyclotrimerization of a 1:1‐adduct. Treatment of 1a with [Cu(L)Cl] (L = PiPr3; SbiPr3) leads to the formation of compounds [CuCl(L){P(tBu)C(NMe2)2}] ( 4a ) (L = PiPr3) and ( 4b ) (L = SbiPr3), respectively. Reaction of [(MeCN)4Cu]BF4 with two equivalents of PhP=C(NMe2)2 ( 1b ) yields complex [Cu{P(Ph)C(NMe2)2}2]BF4 ( 5b ). Similarly, compounds [Cu{P(Aryl)C(NMe2)2}2]BF4 ( 5c (Aryl = Mes and 5d (Aryl = Mes*)) are obtained from ArylP=C(NMe2)2 ( 1c : Aryl = Mes; 1d : Mes*) and [(MeCN)4Cu]BF4 in the presence of SbiPr3. Complexes 2 , 3 , 4a , 4b , and 5b‐5d are characterized by means of elemental analyses and spectroscopy (1H‐, 13C{1H}‐, 31P{1H}‐NMR). The molecular structure of 5d is determined by X‐ray diffraction analysis.  相似文献   

15.
Structure and magnetic properties of N‐diisopropoxyphosphorylthiobenzamide PhC(S)‐N(H)‐P(O)(OiPr)2 ( HLI ) and N‐diisopropoxyphosphoryl‐N′‐phenylthiocarbamide PhN(H)‐C(S)‐N(H)‐P(O)(OiPr)2 ( HLII ) complexes with the CoII cation of formulas [Co{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2] ( 2 ), [Co{PhC(S)‐N(H)‐P(O)(OiPr)2}2{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1a ) and [Co{PhC(S)‐N‐P(O)(OiPr)2}2}(2,2′‐bipy)] ( 3 ), [Co{PhC(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 4 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(2,2′‐bipy)] ( 5 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 6 ) were investigated. Paramagnetic shifts in the 1H NMR spectrum were observed for high‐spin CoII complexes with HLI,II , incorporating the S‐C‐N‐P‐O chelate moiety and two aromatic chelate ligands. Investigation of the thermal dependence of the magnetic susceptibility has shown that the extended materials 1‐2 and 6 show ferromagnetic exchange between distorted tetrahedral ( 1 , 2 ) or octahedral ( 1a , 6 ) metal atoms whereas 3 and 5 show antiferromagnetic properties. Compound 4 behaves as a spin‐canted ferromagnet, an antiferromagnetic ordering taking place below a critical temperature, Tc = 115 K. Complexes 1 and 1a were investigated by single crystal X‐ray diffraction. The cobalt(II) atom in complex 1 resides a distorted tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated ligands. Complex 1a has a tetragonal‐bipyramidal structure, Co(Oax)2(Oeq)2(Seq)2, and two neutral ligand molecules are coordinated in the axial positions through the oxygen atoms of the P=O groups. The base of the bipyramid is formed by two anionic ligands in the typical 1,5‐O,S coordination mode. The ligands are in a trans configuration.  相似文献   

16.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

17.
The data on temperature, solvent, and high hydrostatic pressure influence on the rate of the ene reactions of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione ( 1 ) with 2‐carene ( 2 ), and β‐pinene ( 4 ) have been obtained. Ene reactions 1 + 2 and 1 + 4 have high heat effects: ∆Hrn ( 1 + 2 ) −158.4, ∆Hrn( 1 + 4 ) −159.2 kJ mol−1, 25°C, 1,2‐dichloroethane. The comparison of the activation volume (∆V( 1 + 2 ) −29.9 cm3 mol−1, toluene; ∆V( 1 + 4 ) −36.0 cm3 mol−1, ethyl acetate) and reaction volume values (∆Vr‐n( 1 + 2 ) −24.0 cm3 mol−1, toluene; ∆Vr‐n( 1 + 4 ) −30.4 cm3 mol−1, ethyl acetate) reveals more compact cyclic transition states in comparison with the acyclic reaction products 3 and 5 . In the series of nine solvents, the reaction rate of 1+2 increases 260‐fold and 1+4 increases 200‐fold, respectively, but not due to the solvent polarity.  相似文献   

18.
By reacting Mn2(CO)10 and TeI4 in the ionic liquid[BMIm][OTf] (1‐butyl‐3‐methylimidazolium trifluromethanesulfonate), brick‐red crystals of [BMIm][(Te2)3{Mn(CO)3}2{Mn(CO)4}3]are obtained. The title compound contains the carbonyl anion[(Te2)3{Mn(CO)3}2{Mn(CO)4}3]. Herein, three formal Te22– units and two formal Mn(CO)3+ fragments establish a distorted heterocubane‐like Te6Mn2 structure. Three edges of this heterocubane are furthermore capped by Mn(CO)4+ fragments. The resulting Te6Mn5 building unit, moreover, looks very similar to the P113– anion – the so‐called ufosane. The mean distances Te–Te and Te–Mn are observed with 277.6 and 264.7 pm, respectively. In addition to single‐crystal structure analysis, the title compound is characterized by infrared spectroscopy (FT‐IR), thermogravimetry (TG) and energy‐dispersive X‐ray (EDX) analysis.  相似文献   

19.
Iridium(I) and Iridium(III) Complexes with Triisopropylarsane as Ligand The ethene complex trans‐[IrCl(C2H4)(AsiPr3)2] ( 2 ), which was prepared from [IrCl(C2H4)2]2 and AsiPr3, reacted with CO and Ph2CN2 by displacement of ethene to yield the substitution products trans‐[IrCl(L)(AsiPr3)2] ( 3 : L = CO; 4 : L = N2). UV irradiation of 2 in the presence of acetonitrile gave via intramolecular oxidative addition the hydrido(vinyl)iridium(III) compound [IrHCl(CH=CH2)(CH3CN)(AsiPr3)2] ( 5 ). The reaction of 2 with dihydrogen led under argon to the formation of the octahedral complex [IrH2Cl(C2H4)(AsiPr3)2] ( 7 ), whereas from 2 under 1 bar H2 the ethene‐free compound [IrH2Cl(AsiPr3)2] ( 6 ) was generated. Complex 6 reacted with ethene to afford 7 and with pyridine to give [IrH2Cl(py)(AsiPr3)2] ( 8 ). The mixed arsane(phosphane)iridium(I) compound [IrCl(C2H4)(PiPr3)(AsiPr3)] ( 11 ) was prepared either from the dinuclear complex [IrCl(C2H4)(PiPr3)]2 ( 9 ) and AsiPr3 or by ligand exchange from [IrCl(C2H4)(PiPr3)(SbiPr3)] ( 10 ) und triisopropylarsane. The molecular structure of 5 was determined by X‐ray crystallography.  相似文献   

20.
The novel phosphonyl‐substituted ferrocene derivatives [Fe(η5‐Cp)(η5‐C5H3{P(O)(O‐iPr)2}2‐1,2)] ( Fc1,2 ) and [Fe{η5‐C5H4P(O)(O‐iPr)2}2] ( Fc1,1′ ) react with SnCl2, SnCl4, and SnPh2Cl2, giving the corresponding complexes [(Fc1,2)2SnCl][SnCl3] ( 1 ), [{(Fc1,1′)SnCl2}n] ( 2 ), [(Fc1,1′)SnCl4] ( 3 ), [{(Fc1,1′)SnPh2Cl2}n] ( 4 ), and [(Fc1,2)SnCl4] ( 5 ), respectively. The compounds are characterized by elemental analyses, 1H, 13C, 31P, 119Sn NMR and IR spectroscopy, 31P and 119Sn CP‐MAS NMR spectroscopy, cyclovoltammetry, electrospray ionization mass spectrometry, and single‐crystal as well as powder X‐ray diffraction analyses. The experimental work is accompanied by DFT calculations, which help to shed light on the origin for the different reaction behavior of Fc1,1′ and Fc1,2 towards tin(II) chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号