首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ambiphilic ligands have received considerable attention over the last two decades due to their unique reactivity as organocatalysts and ligands. The iridium‐catalyzed C H borylation of phosphines is described in which the phosphine is used as a directing group to provide selective formation of arylboronate esters with unique scaffolds of ambiphilic compounds. A variety of aryl and benzylic phosphines were subjected to the reaction conditions, selectively providing stable, isolable boronate esters upon protection of the phosphine as the borane complex. After purification, the phosphine‐substituted boronate esters could be deprotected and isolated in pure form.  相似文献   

2.
In hydrogen‐metal‐phosphorus (H M P) transition metal complexes (proposed as intermediates of H P bond addition to alkynes in the catalytic hydrophosphorylation, hydrophosphinylation, and hydrophospination reactions), alkyne insertion into the metal‐hydrogen bond was found much more facile compared to alkyne insertion into the metal‐phosphorus bond. The conclusion was verified for different metals (Pd, Ni, Pt, and Rh), ligands, and phosphorus groups at various theory levels (B3LYP, B3PW91, BLYP, MP2, and ONIOM). The relative reactivity of the metal complexes in the reaction with alkynes was estimated and decreased in the order of Ni>Pd>Rh>Pt. A trend in relative reactivity was established for various types of phosphorus groups: PR2>P(O)R2>P(O)(OR)2, which showed a decrease in rate upon increasing the number of the oxygen atoms attached to the phosphorus center.  相似文献   

3.
4.
Activating C? F bonds : Strong metal–fluorocarbon coordination in complexes of electropositive metals (e.g., Na, K, Yb) with chelating polyfluorophenyl‐substituted amide ligands is a precursor to C? F bond activation and fluoride abstraction when M=YbII, giving heteroleptic YbIII fluoride clusters (see scheme).

  相似文献   


5.
The impact of redox non‐innocence (RNI) on chemical reactivity is a forefront theme in coordination chemistry. A diamide diimine ligand, [{‐CHN(1,2‐C6H4)NH(2,6‐iPr2C6H3)}2]n (n=0 to −4), (dadi)n, chelates Cr and Fe to give [(dadi)M] ([ 1 Cr(thf)] and [ 1 Fe]). Calculations show [ 1 Cr(thf)] (and [ 1 Cr]) to have a d4 Cr configuration antiferromagnetically coupled to (dadi)2−*, and [ 1 Fe] to be S=2. Treatment with RN3 provides products where RN is formally inserted into the C C bond of the diimine or into a C H bond of the diimine. Calculations on the process support a mechanism in which a transient imide (imidyl) aziridinates the diimine, which subsequently ring opens.  相似文献   

6.
7.
8.
9.
10.
11.
12.
The diuranium(III) compound [UN′′2]2(μ‐η66‐C6H6) (N′′=N(SiMe3)2) has been studied using variable, high‐pressure single‐crystal X‐ray crystallography, and density functional theory . In this compound, the low‐coordinate metal cations are coupled through π‐ and δ‐symmetric arene overlap and show close metal CH contacts with the flexible methyl CH groups of the sterically encumbered amido ligands. The metal–metal separation decreases with increasing pressure, but the most significant structural changes are to the close contacts between ligand CH bonds and the U centers. Although the interatomic distances are suggestive of agostic‐type interactions between the U and ligand peripheral CH groups, QTAIM (quantum theory of atoms‐in‐molecules) computational analysis suggests that there is no such interaction at ambient pressure. However, QTAIM and NBO analyses indicate that the interaction becomes agostic at 3.2 GPa.  相似文献   

13.
MOFs with both multicentered metal–metal bonds and low‐oxidation‐state (LOS) metal ions have been underexplored hitherto. Here we report the first cubic [MnI8] cluster‐based MOF ( 1 ) with multicentered MnI MnI bonds and +1 oxidation state of manganese (MnI or Mn(I)), as is supported by single‐crystal structure determination, XPS analyses, and quantum chemical studies. Compound 1 possesses the shortest MnI MnI bond of 2.372 Å. Theoretical studies with density functional theory (DFT) reveal extensive electron delocalization over the [MnI8] cube. The 48 electrons in the [MnI8] cube fully occupy half of the 3d‐based and the lowest 4s‐based bonding orbitals, with six electrons lying at the nonbonding 3d‐orbitals. This bonding feature renders so‐called cubic aromaticity. Magnetic properties measurements show that 1 is an antiferromagnet. This work is expected to inspire further investigation of cubic metal–metal bonding, MOF materials with LOS metals, and metalloaromatic theory.  相似文献   

14.
15.
16.
Relativity matters: Calculations of NMR shielding tensors and spin–spin coupling constants transmitted through Ir? H???H? N dihydrogen bonds are presented. The picture shows one of the simplified models employed. It is shown that the spin–orbit relativistic effects influence the NMR shielding constants far more than the spin–spin coupling constants.

  相似文献   


17.
18.
19.
The rare‐earth‐metal? hydride complexes [{(1,7‐Me2TACD)LnH}4] (Ln=La 1 a , Y 1 b ; (1,7‐Me2TACD)H2=1,7‐dimethyl‐1,4,7,10‐tetraazacyclododecane, 1,7‐Me2[12]aneN4) were synthesized by hydrogenolysis of [{(1,7‐Me2TACD)Ln(η3‐C3H5)}2] with 1 bar H2. The tetrameric structures were confirmed by 1H NMR spectroscopy and single‐crystal X‐ray diffraction of compound 1 a . Both complexes catalyze the dehydrogenation of secondary amine? borane Me2NH ? BH3 to afford the cyclic dimer (Me2NBH2)2 and (Me2N)2BH under mild conditions. Whilst the complete conversion of Me2NH ? BH3 was observed within 2 h with lanthanum? hydride 1 a , the yttrium homologue 1 b required 48 h to reach 95 % conversion. Further reactions of compound 1 a with Me2NH ? BH3 in various stoichiometric ratios gave a series of intermediate products, [{(1,7‐Me2TACD)LaH}4](Me2NBH2)2 ( 2 a ), [(1,7‐Me2TACDH)La(Me2NBH3)2] ( 3 a ), [(1,7‐Me2TACD)(Me2NBH2)La(Me2NBH3)] ( 4 a ), and [(1,7‐Me2TACD)(Me2NBH2)2La(Me2NBH3)] ( 5 a ). Complexes 2 a , 3 a , and 5 a were isolated and characterized by multinuclear NMR spectroscopy and single‐crystal X‐ray diffraction studies. These intermediates revealed the activation and coordination modes of “Me2NH ? BH3” fragments that were trapped within the coordination sphere of a rare‐earth‐metal center.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号