首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and self‐assembly behavior of porphyrin–polypyridyl ruthenium(II) hybrid, which consists of a flexible alkyl chain attached with two conjugated moieties is described. The electronic absorption spectrum and emission spectra show that the [C8‐TPP‐(ip)Ru(phen)2](ClO4)2, abbreviated as (C8ip)TPPC has optical properties. Scanning tunneling microscopy (STM) studies found that the π–π interaction and metal–ligand interaction allow (C8ip)TPPC to form self‐assembled structure and have an edge‐on orientation on the highly oriented pyrolytic graphite (HOPG) surface. The multidentate structure in (C8ip)TPPC molecules act as linkers between the molecules and form metal–ligand coordination, which forces the assembly process in the direction of stable columnar arrays. In addition, although the sample was stored for two months in ambient conditions, STM experiments showed that the order of (C8ip)TPPC self‐assembly only slightly decreased which indicates that the self‐assembled monolayer is stable. This work demonstrates that introducing a metal‐ligand in the porphyrin‐polypyridyl compound is a useful strategy to obtain novel surface assemblies.  相似文献   

2.
By means of scanning tunneling microscopy (STM), the self-assembly of two organic donor-acceptor-donor triads (donor=oligo(p-phenylene vinylene) (OPV); acceptor=perylene diimide (PDI)) and their mixtures has been investigated at the liquid/solid interface. Both triads differ in the nature of the substituents and, therefore, in the redox properties of the central perylene diimide unit (H or Cl). Thanks to the submolecular resolution, the distinct electronic properties of the units, within a triad and between the two triads, are reflected by the relative STM contrast in the bias-dependent imaging experiments. Moreover, scanning tunneling spectroscopy reveals an inverse rectifying behavior of the OPV and H-substituted PDI units, which is discussed in the framework of quasi-resonant tunneling. A striking difference is observed for the Cl-substituted triad.  相似文献   

3.
史林启 《高分子科学》2017,35(11):1328-1341
Inspired by structures of antenna-reaction centers in photosynthesis, the complex micelle was prepared from zinc tetra-phenyl porphyrin (ZnTPP), fullerene derivative (PyC60) and poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL). The core-shell structure made the hydrophobic donor-acceptor system work in aqueous. In micellar core, coordination interaction occurred between ZnTPP and PyC60 molecules which ensured the enhanced energy migration from the donor to the acceptor. The enhanced interaction between porphyrin and fullerene was confirmed by absorption, steady-state fluorescence and transient fluorescence. The generation of singlet oxygen and superoxide radical was detected by iodide method and reduction of nitro blue tetrazolium, respectively, which confirmed that electron transfer reaction in the complex micellar core occurred. Moreover, the complex micelle exhibited effective electron transfer performance in photodebromination of 2,3-dibromo-3-phenylpropionic acid. The complex micellar structure endowed the donor-acceptor system with improved stability under irradiation. This strategy could be helpful for designing new electron transfer platform and artificial photosynthetic system.  相似文献   

4.
The confined space inside a self‐assembled cage enhanced halogen bonding (XB) between iodoperfluorocarbons (XB donors) and NO3? anions or H2O molecules (XB acceptors), as confirmed by NMR spectroscopy in solution and by X‐ray crystallography in the solid state. The cavity also bound an XB donor–acceptor pair, C6F3I3 and C6H5NMe2, in a selective pairwise fashion.  相似文献   

5.
Two novel nonsymmetrical disc‐shaped molecules 1 and 2 based on 3,3′‐bis(acylamino)‐2,2′‐bipyridine units were synthesized by means of a statistical approach. Discotic 1 possesses six chiral dihydrocitronellyl tails and one peripheral phenyl group, whereas discotic 2 possesses six linear dodecyloxy tails and one peripheral pyridyl group. Preorganization by strong intramolecular hydrogen bonding and subsequent aromatic interactions induce self‐assembly of the discotics. Liquid crystallinity of 1 and 2 was determined with the aid of polarized optical microscopy, differential scanning calorimetry, and X‐ray diffraction. Two columnar rectangular mesophases (Colr) have been identified, whereas for C3‐symmetrical derivatives only one Colr mesophase has been found. 1 In solution, the molecularly dissolved state in chloroform was studied with 1H NMR spectroscopy, whereas the self‐assembled state in apolar solution was examined with optical spectroscopy. Remarkably, these desymmetrized discotics, which lack one aliphatic wedge, behave similar to the symmetric parent compound. To prove that the stacking behavior of discotics 1 and 2 is similar to that of reported C3‐symmetrical derivatives, a mixing experiment of chiral 1 with C3‐symmetrical 13 has been undertaken; it has shown that they indeed belong to one type of self‐assembly. This helical J‐type self‐assembly was further confirmed with UV/Vis and photoluminescence (PL) spectroscopy. Eventually, disc 2 , functionalized with a hydrogen‐bonding acceptor moiety, might perform secondary interactions with molecules such as acids.  相似文献   

6.
《化学:亚洲杂志》2017,12(17):2258-2270
BF2‐chelated dipyrromethene, BODIPY, was functionalized to carry two styryl crown ether tails and a secondary electron donor at the meso position. By using a “two‐point” self‐assembly strategy, a bis‐alkylammonium‐functionalized fullerene (C60) was allowed to self‐assemble the crown ether voids of BODIPY to obtain multimodular donor–acceptor conjugates. As a consequence of the two‐point binding, the 1:1 stoichiometric complexes formed yielded complexes of higher stability in which fluorescence of BODIPY was found to be quenched; this suggested the occurrence of excited‐state processes. The geometry and electronic structure of the self‐assembled complexes were derived from B3LYP/3‐21G(*) methods in which no steric constraints between the entities was observed. An energy‐level diagram was established by using spectral, electrochemical, and computational results to help understand the mechanistic details of excited‐state processes originating from 1bis‐styryl‐BODIPY*. Femtosecond transient absorbance studies were indicative of the formation of an exciplex state prior to the charge‐separation process to yield a bis‐styryl‐BODIPY . +–C60 . radical ion pair. The time constants for charge separation were generally lower than charge‐recombination processes. The present studies bring out the importance of multimode binding strategies to obtain stable self‐assembled donor–acceptor conjugates capable of undergoing photoinduced charge separation needed in artificial photosynthetic applications.  相似文献   

7.
Photoinduced electron transfer was studied in self‐assembled donor–acceptor dyads, formed by axial coordination of pyridine appended with naphthalenediimide (NDI) to zinc naphthalocyanine (ZnNc). The NDI‐py:ZnNc ( 1 ) and NDI(CH2)2‐py:ZnNc ( 2 ) self‐assembled dyads absorb light over a wide region of the UV/Vis/near infrared (NIR) spectrum. The formation constants of the dyads 1 and 2 in toluene were found to be 2.5×104 and 2.2×104 M ?1, respectively, from the steady‐state absorption and emission measurements, suggesting moderately stable complex formation. Fluorescence quenching was observed upon the coordination of the pyridine‐appended NDI to ZnNc in toluene. The energy‐level diagram derived from electrochemical and optical data suggests that exergonic charge separation through the singlet state of ZnNc (1ZnNc*) provides the main quenching pathway. Clear evidence for charge separation from the singlet state of ZnNc to NDI was provided by femtosecond laser photolysis measurements of the characteristic absorption bands of the ZnNc radical cation in the NIR region at 960 nm and the NDI radical anion in the visible region. The rates of charge‐separation of 1 and 2 were found to be 2.2×1010 and 4.4×109 s?1, respectively, indicating fast and efficient charge separation (CS). The rates of charge recombination (CR) and the lifetimes of the charge‐separated states were found to be 8.50×108 s?1 (1.2 ns) for 1 and 1.90×108 s?1 (5.3 ns) for 2 . These values indicate that the rates of the CS and CR processes decrease as the length of the spacer increases. Their absorption over a wide portion of the solar spectrum and the high ratio of the CS/CR rates suggests that the self‐assembled NDI‐py:ZnNc and NDI(CH2)2‐py:ZnNc dyads are useful as photosynthetic models.  相似文献   

8.
Donor–acceptor distance, orientation, and photoexcitation wavelength are key factors in governing the efficiency and mechanism of electron‐transfer reactions both in natural and synthetic systems. Although distance and orientation effects have been successfully demonstrated in simple donor–acceptor dyads, revealing excitation‐wavelength‐dependent photochemical properties demands multimodular, photosynthetic‐reaction‐center model compounds. Here, we successfully demonstrate donor– acceptor excitation‐wavelength‐dependent, ultrafast charge separation and charge recombination in newly synthesized, novel tetrads featuring bisferrocene, BF2‐chelated azadipyrromethene, and fullerene entities. The tetrads synthesized using multistep synthetic procedure revealed characteristic optical, redox, and photo reactivities of the individual components and featured “closely” and “distantly” positioned donor–acceptor systems. The near‐IR‐emitting BF2‐chelated azadipyrromethene acted as a photosensitizing electron acceptor along with fullerene, while the ferrocene entities acted as electron donors. Both tetrads revealed excitation‐wavelength‐dependent, photoinduced, electron‐transfer events as probed by femtosecond transient absorption spectroscopy. That is, formation of the Fc+–ADP–C60.? charge‐separated state upon C60 excitation, and Fc+–ADP.?–C60 formation upon ADP excitation is demonstrated.  相似文献   

9.
A series of poly(aryl ether) dendrons with a monopyrrolo‐tetrathiafulvalene unit linked through an acyl hydrazone linkage were designed and synthesized as low molecular mass organogelators (LMOGs). Two of the dendrons could gelate the aromatic solvents and some solvent mixtures, but the others could not gel all solvents tested except for n‐pentanol. A subtle change on the molecular structure produces a great influence on the gelation behavior. Note that the dendrons could form the stable gel in the DMSO/water mixture without thermal treatment and could also form the binary gel with fullerene (C60) in toluene. The formed gels undergo a reversible gel–sol phase transition upon exposure to external stimuli, such as temperature and chemical oxidation/reduction. A number of experiments (SEM, FTIR spectroscopy, 1H NMR spectroscopy, and UV/Vis absorption spectroscopy, and XRD) revealed that these dendritic molecules self‐assembled into elastically interpenetrating one‐dimensional fibrillar aggregates and maintain rectangular molecular‐packing mode in organogels. The hydrogen bonding, π–π, and donor–acceptor interactions were found to be the main driving forces for formation of the gels. Moreover, the gel system exhibited gel‐induced enhanced emission (GIEE) property in the visible region in spite of the absence of a conventional fluorophore unit and the fluorescence was effectively quenched by introduction of C60.  相似文献   

10.
A zinc phthalocyanine endowed with four [18]‐crown‐6 moieties, ZnPcTeCr, has been prepared and self‐assembled with either pyridyl‐functionalized perylenebisimides (PDI‐Py) or fullerenes (C60‐Py) to afford a set of novel electron donor–acceptor hybrids. In the case of ZnPcTeCr, aggregation has been circumvented by the addition of potassium or rubidium ions to lead to the formation of monomers and cofacial dimers, respectively. From fluorescence titration experiments, which gave rise to mutual interactions between the electron donors and the acceptors in the excited state, the association constants of the respective ZnPcTeCr monomers and/or dimers with the corresponding electron acceptors were derived. Complementary transient‐absorption experiments not only corroborated photoinduced electron transfer from ZnPcTeCr to either PDI‐Py or C60‐Py within the electron donor–acceptor hybrids, but also the unexpected photoinduced electron transfer within ZnPcTeCr dimers. In the electron donor–acceptor hybrids, the charge‐separated‐state lifetimes were elucidated to be close to 337 ps and 3.4 ns for the two PDI‐Pys, whereas the longest lifetime for the photoactive system that contains C60‐Py was calculated to be approximately 5.1 ns.  相似文献   

11.
Supramolecular polymers are a class of macromolecules stabilized by weak non‐covalent interactions. These self‐assembled aggregates typically undergo stimuli‐induced reversible assembly and disassembly. They thus hold great promise as so‐called functional materials. In this work, we present the design, synthesis, and responsive behavior of a short supramolecular oligomeric system based on two hetero‐complementary subunits. These “monomers” consist of a tetrathiafulvalene‐functionalized calix[4]pyrrole (TTF‐C[4]P) and a glycol diester‐linked bis‐2,5,7‐trinitrodicyanomethylenefluorene‐4‐carboxylate (TNDCF), respectively. We show that when mixed in organic solvents, such as CHCl3, CH2ClCH2Cl, and methylcyclohexane, supramolecular aggregation takes place to produce short oligomers stabilized by hydrogen bonding and donor–acceptor charge‐transfer (CT) interactions. The self‐associated materials were characterized by 1H NMR and UV/Vis/NIR absorption spectroscopy, as well as by concentration‐ and temperature‐dependent absorption spectroscopy and dynamic light scattering (DLS) analyses of both the monomeric and oligomerized species. The self‐associated system produced from TTF‐C[4]P and TNDCF exhibits a concentration‐dependent aggregation behavior typical of supramolecular polymers. Further support for the proposed self‐assembly came from theoretical calculations. The fluorescence emitting properties of TNDCF are quenched under conditions that promote the formation of supramolecular aggregates containing TTF‐C[4]P and TNDCF. This quenching effect has been utilized as a probe for the detection of substrates in the form of anions (i.e., chloride) and nitroaromatic explosives (i.e., 1,3,5‐trinitrobenzene). Specifically, the addition of these substrates to mixtures of TTF‐C[4]P and TNDCF produced a fluorescence “turn‐on” response.  相似文献   

12.
The synthesis and structures of the N‐[(2‐hydroxy‐3‐methyl‐5‐dodecylphenyl)methyl]‐N‐(carboxymethyl)glycine disodium salt (H L ) ligand and its neutral mononuclear complex [FeIII( L )(EtOH)2] ( 1 ) are reported. Structural and electronic properties of 1 were investigated by using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy (CITS) techniques. These studies reveal that molecules of 1 form well‐ordered self‐assemblies when deposited on a highly oriented pyrolytic graphite (HOPG) surface. At low concentrations, single or double chains (i.e., nanowires) of the complex were observed, whereas at high concentration the complex forms crystals and densely packed one‐dimensional structures. In STM topographies, the dimensions of assemblies of 1 found on the surface are consistent with dimensions obtained from X‐ray crystallography, which indicates the strong similarities between the crystal form and surface assembled states. Double chains are attributed to hydrogen‐bonding interactions and the molecules align preferentially along graphite defects. In the CITS image of complex 1 a strong tunneling current contrast at the positions of the metal ions was observed. These data were interpreted and reveal that the bonds coordinating the metal ions are weaker than those of the surrounding ligands; therefore the energy levels next to the Fermi energy of the molecule should be dominated by metal‐ion orbitals.  相似文献   

13.
Efficient photoinduced electron transfer was observed across a [10]cycloparaphenylene ([10]CPP) moiety that serves as a rigid non‐covalent bridge between a zinc porphyrin and a range of fullerenes. The preparation of iodo‐[10]CPP is the key to the synthesis of a porphyrin–[10]CPP conjugate, which binds C60, C70, (C60)2, and other fullerenes (KA>105 m ?1). Fluorescence and pump–probe spectroscopy revealed intramolecular energy transfer between CPP and porphyrin and also efficient charge separation between porphyrin and fullerenes, affording up to 0.5 μs lifetime charge‐separated states. The advantage of this approach towards electron donor–acceptor dyads is evident in the case of dumbbell‐shaped (C60)2, which gave intricate charge‐transfer behavior in 1:1 and 2:1 complexes. These results suggest that [10]CPP and its cross‐coupled derivatives could act as supramolecular mediators of charge transport in organic electronic devices.  相似文献   

14.
The synthesis of a donor–acceptor silicon phthalocyanine (SiPc)‐azafullerene (C59N) dyad 1 and of the first acceptor–donor–acceptor C59N‐SiPc‐C59N dumbbell triad 2 was accomplished. The two C59N‐based materials were comprehensively characterized with the aid of NMR spectroscopy, MALDI‐MS as well as DFT calculations and their redox and photophysical properties were evaluated with CV and steady‐state and time‐resolved absorption and photoluminescence spectroscopy measurements. Notably, femtosecond transient absorption spectroscopy assays revealed that both dyad 1 and triad 2 undergo, after selective photoexcitation of the SiPc moiety, photoinduced electron transfer from the singlet excited state of the SiPc moiety to the azafullerene counterpart to produce the charge‐separated state, with lifetimes of 660 ps, in the case of dyad 1 , and 810 ps, in the case of triad 2 . The current results are expected to have significant implications en route to the design of advanced C59N‐based donor–acceptor systems targeting energy conversion applications.  相似文献   

15.
Axial coordination of fullerenopyrrolidine bearing the donor imidazolyl group, cis-3-(4-imidazolylphenyl)-1-(pyridin-2-yl)[60]fullereno[1,2-c]pyrrolidine (C60∼Im), with zinc meso-tetraphenylporphyrinate (ZnTPP) in an o-dichlorobenzene solution affords a non-covalently bonded donor-acceptor dyad ZnTPP-C60∼Im. The photochemical behavior of the ZnTPP-C60∼Im complex was studied by fluorescence (excitation at λ = 420 nm) and laser kinetic spectroscopy (excitation at λ = 532 nm, 12 ns). The formation constant of the 1: 1 porphyrin-fullerenopyrrolidine complex determined from quenching of ZnTPP fluorescence assuming static intracomplex quenching is 1.6·104 L mol−1. Absorption spectra of the excited states in the system consisting of ZnTPP and Im∼C60 (ZnTPP/C60∼Im) were measured in solution from 380 to 1000 nm. The quenching constant of the triplet-excited ZnTPP with fullerenopyrrolidine C60∼Im was determined. The results obtained indicate the formation of the triplet exciplex {PL}* ⇌ {Pδ+…Lδ−} in the ZnTPP/C60∼Im system upon laser photolysis. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1541–1547, September, 2006.  相似文献   

16.
《化学:亚洲杂志》2017,12(19):2558-2564
The on‐surface self‐assembled behavior of four C 3‐symmetric π‐conjugated planar molecules ( Tp , T12 , T18 , and Ex ) has been investigated. These molecules are excellent building blocks for the construction of noncovalent organic frameworks in the bulk phase. Their hydrogen‐bonded 2D on‐surface self‐assemblies are observed under STM at the solid/liquid interface; these structures are very different to those in the bulk crystal. Upon combining the results of STM measurements and DFT calculations, the formation mechanism of different assemblies is revealed; in particular, the critical role of hydrogen bonding in the assemblies. This research provides us with not only a deep insight into the self‐assembled behavior of these novel functional molecules, but also a convenient approach toward the construction of 2D multiporous networks.  相似文献   

17.
The electrochemical behavior of cytochrome c (cyt‐c) that was electrostatically immobilized onto a self‐assembled monolayer (SAM) of captopril (capt) on a gold electrode has been investigated. Cyclic voltammetry, scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy were employed to evaluate the blocking property of the capt SAM. SECM was used to measure the bimolecular electron transfer (ET) kinetics (kBI) between a solution‐based redox probe and the immobilized protein. In addition, the tunneling ET between the immobilized protein and the underlying gold electrode was calculated. A kBI value of (5.0±0.6)×108 mol?1 cm3 s?1 for the bimolecular ET and a standard tunneling rate constant (k0) of 46.4±0.2 s?1 for the tunneling ET have been obtained.  相似文献   

18.
The on‐surface polymerization of 1,3,6,8‐tetrabromopyrene (Br4Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C?Cu?C bonds. After annealing at 473 K, the C?Cu?C bonds were converted to covalent C?C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self‐assembled two‐dimensional (2D) patterns stabilized by both Br?Br halogen and Br?H hydrogen bonds were observed upon deposition of Br4Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C?Br bonds and the formation of disordered metal‐coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4Py on the different substrates.  相似文献   

19.
Three kinds of chiral saccharide‐containing liquid crystalline (LC) acetylenic monomers were prepared by click reaction between 2‐azidoethyl‐2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranoside and 1‐biphenylacetylene 4‐alkynyloxybenzoate. The obtained monomers were polymerized by WCl6‐Ph4Sn to form three side‐chain LC polyacetylenes containing 1‐[2‐(2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranos‐1‐yl)‐ethyl]‐1H‐[1,2,3]‐triazol‐4′‐biphenyl 4‐alkynyloxybenzoate side groups. All monomers and polymers show a chiral smectic A phase. Self‐assembled hiearchical superstructures of the chiral saccharide‐containing LCs and LCPs in solution state were studied by field‐emission scanning electron microscopy. Because of the LC behavior, the LC molecules exhibit a high segregation strength for phase separation in dilute solution (THF/H2O = 1:9 v/v). The self‐assembled morphology of LC monomers was dependent upon the alkynyloxy chain length. Increasing the alkynyloxy chain length caused the self‐assembled morphology to change from a platelet‐like texture ( LC‐6 ) to helical twists morphology ( LC‐11 and LC‐12 ). Furthermore, the helical twist morphological structure can be aligned on the polyimide rubbed glass substrate to form two‐dimensional ordered helical patterns. In contrast to LC monomers, the LCP‐11 self‐assembled into much more complicate morphologies, including nanospheres and helical nanofibers. These nanofibers are evolved from the helical cables ornamented with entwining nanofibers upon natural evaporation of the solution in a mixture with a THF/methanol ratio of 3:7. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6596–6611, 2009  相似文献   

20.
The molecular packing structure in the self‐assembled p‐n and n‐p‐n heterostructure oligomers (OT2O and T2O2) was investigated. The macroscopic properties of the two oligomers were systemically investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and X‐ray diffraction (XRD), which revealed that the 3D (three‐dimensional) assemblies of the two oligomers exhibited obvious differences. The two‐dimensional assemblies (2D) of them were identified by scanning tunneling microscopy (STM) on a highly oriented poyrolytic graphite (HOPG) surface. Well‐ordered monolayer assembly structures were fabricated by symmetric molecules (OT2Os), while the ordered dormain of asymmetric molecule (T2O2s) could not be clearly resolved. This system, as an excellent example, may provide guidance for the design of the novel p‐n heterostructure oligomer and polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号