首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel preconcentration/separation approach, which online combined CZE with CD‐modified MEKC, was developed for simultaneous enhancing resolving power and detection sensitivity. CZE with cation‐selective exhaustive injection and transient ITP preconcentration was used as the first dimension, from which the effluent fractions were further analyzed by CD‐modified MEKC acting as the second dimension. As the key to successful integration of CZE with MEKC, a new interface was designed and electroaccumulation focusing strategy was employed to avoid analyte band diffusion at the interface. The comprehensive 2‐D system was successfully established with only one high voltage and four electrodes. The grouping of two orthogonal separation techniques, together with analytes preconcentration techniques, significantly enhanced resolution and sensitivity for 2‐D separation of cationic compounds. The resulting electrophoregram was quite different from that of either single CZE or MEKC. Up to 14 000‐ to 35 000‐fold improvement in sensitivity was obtained relative to conventional electrokinetic injection method. The limits of detection (S/N=3) were in the range of 0.03–0.1 μg/L. The number of theoretical plates was in the range of 103 000–184 000. This method was successfully applied to the analysis of trace cationic cardiovascular drugs in wastewater.  相似文献   

2.
Summary Two modes of capillary electrophoresis (CE), capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC), were investigated for the separation of 12 aromatic sulphonate compounds. In CZE, although the voltage applied, the buffer concentration and the pH were optimized for effective separation of the compounds studied, under the best conditions four of the five amino compounds coeluted, as did naphthalene-1-sulphonic acid and naphthalene-2-sulphonic acid. In MEKC, sodium dodecyl sulphate (SDS) and Brij 35 were chosen as the anionic and nonionic surfactants and the effect of the concentration of micelles was examined. The effect of adding methanol as the organic modifier was also investigated with each of these micellar systems. All the analytes, including the isomers, were completely separated by use of MEKC with Brij 35 but when SDS was used only 11 compounds were separated because two amino compounds coeluted.  相似文献   

3.
The enantiomers of vildagliptin, an orally available and selective dipeptidyl‐peptidase‐4 inhibitor used for the treatment of type II diabetes, have been separated by CD‐modified CZE, using uncoated fused‐silica capillary. After screening 13 negatively charged CD derivatives as potential chiral selectors, sulfobutyl‐ether‐α‐CD (SBE‐α‐CD) was selected for the enantioseparation. For the optimization, a factorial analysis study was performed by orthogonal experimental design. Six experimental factors were chosen as variable parameters: temperature, applied voltage, chiral selector and BGE concentrations, pH, and the parameters of the hydrodynamic injection. The optimized system still was not considered final as the second peak (S‐enantiomer) migrated too close to the EOF, resulting in a potential inaccuracy during the determination of the chiral impurity. To fine‐tune the method “one factor at a time” variation approach was applied. The final method (applying 15°C capillary temperature, 40 mbar × 4 s hydrodynamic injection, 25 kV voltage in 75 mM acetate‐Tris buffer [pH 4.75] containing 20 mM SBE‐α‐CD as chiral selector) was validated according to the ICH guideline. RSD percentage of the resolution value, migration times, and corrected peak areas were below 5% during testing repeatability and intermediate precision. LOD and LOQ values were found to be 2.5 and 7.5 μg/mL, respectively. The method is considered linear in the 7.5–180 μg/mL range for the R‐enantiomer. The robustness of the method was justified using Plackett–Burmann statistical experimental design.  相似文献   

4.
Nanoparticles (NPs) can be used as pseudostationary phases (PSPs) in EKC, which is similar to the use of micelle additives as applied in MEKC. To date, the use of NPs to enhance enantiomeric separation by EKC with β‐CD or its derivative as chiral selector has been reported only in two papers. However, to the best of our knowledge, there has been no prior effort to use NPs for achieving enantioseparation with polysaccharides as chiral selector. This paper describes for the first time the use of carbon nanoparticles (CNPs) as PSPs to modify chiral separation system employing dextrin as chiral selector for the enantioseparations of several basic drugs in capillary EKC. Three different types of CNPs, including carbogenic nanoparticles (NPs), carboxylated single‐walled carbon nanotubes, and carboxylated multiwalled carbon nanotubes, were used as running buffer additives, respectively. The potential of the PSPs and the effects of dextrin concentration, buffer pH, and buffer concentration on the enantioseparations were evaluated. Four pairs of tested enantiomers were successfully resolved in less than 15 min with the resolution values in the range of 1.41–4.52 under optimized conditions. Compared to the buffer without NPs, the introduction of NPs into the buffer enhanced the separation of the enantiomers.  相似文献   

5.
In recent years, nanoparticles have gained more attention when used in separation science. In this study, chitosan‐modified silica nanoparticles were successfully synthesized and characterized by transmission electron microscopy, elemental analysis and zeta potential measurements, etc. When added into the running buffer solution as pseudo‐stationary phase in capillary electrophoresis, the separation of four representative auxins, i.e., indole‐3‐acetic acid, indole butyric acid, 2,4‐dichlorophenoxyacetic acid, 1‐naphthaleneacetic acid, was carried out. Some important factors, such as the nanoparticles concentration, the pH and concentration of the running buffer solution, were also investigated on the separation. Under optimized experimental conditions, all the auxins investigated can be baseline separated within 5 min with higher column performance. The method established can also be used for quantitative analysis. The relative standard deviations obtained for indole‐3‐acetic acid, indole butyric acid, 2,4‐dichlorophenoxyacetic acid, 1‐naphthaleneacetic acid were in the range of 1.6–5.7% for peak area and 0.53–1.60% for migration time. The calibration curves obtained from the peaks areas for auxins were linear in the range of 0.1–80 mg/L with the correlation coefficients of 0.994–0.999. The limit of detection (S/N = 3) was 11–75 μg/L. The developed method was also successfully used for the determination of auxins in fruits and vegetables samples with good recoveries.  相似文献   

6.
Surfactant‐assisted electromembrane extraction coupled with cyclodextrin‐modified capillary electrophoresis was developed for the separation and determination of Tranylcypromine enantiomers in biological samples. This combination would provide a new strategy for selective and sensitive determination of target analytes. The addition of surfactant in the donor solution improved the analyte transport into the lumen of hollow fiber that resulted in an enhancement in the analytes migration into acceptor solution. Optimization of the variables, affecting proposed method, was carried out and best results were achieved with a 175 V potential as driving force of the electromembrane extraction, 2‐nitrophenyloctylether as the supported liquid membrane, donor solution containing 0.2 mM Triton X‐100 with pH 3 and 0.1 M HCl for acceptor solution. Then, the extract was analyzed using cyclodextrin‐modified capillary electrophoresis method for separation of Tranylcypromine enantiomers. The best results were obtained with a phosphate running buffer (100 mM, pH 2.0) containing 7% w/v hydroxypropyl‐α‐cyclodextrin. Under the optimum conditions, a low limit of detection (3.03 ng/mL), good linearity (R2 > 0.9953), and relative standard deviations below 4.0% (n = 5) were obtained. Finally, this procedure was applied to determine the concentration of Tranylcypromine enantiomers in urine samples with satisfactory results.  相似文献   

7.
In this article, a carbon disk electrode modified with mesoporous carbon material (CMK‐3) was used in CE with amperometric detection system for the simultaneous determination of four types of important nitroaromatic compounds, including 2,4,6‐trinitrotoluene (TNT), 1,3,5‐trinitrobenzene (TNB), 2,4‐dinitrotoluene (DNT) and 1,3‐dinitrobenzene (DNB). Compared with the bare carbon electrode, the CMK‐3 modified electrode greatly improved the sensitivity at a relatively positive detection potential due to its excellent electrocatalytic activities, high conductivity and large effective surface area. The four analytes could be well separated and detected within 480 s. A good linear response was obtained for TNB, DNB, TNT and DNT from 8.4 to 5.0×103 μg/L, with correlation coefficients higher than 0.9992. And the detection limits were established between 3.0 and 4.7 μg/L for the four investigated nitroaromatic compounds (S/N=3). The CMK‐3‐modified electrode was successfully employed to analyze coking wastewater, tap water and river samples with recoveries in the range of 94.8–109.0%, and RSDs less than 5.0%. The presented results demonstrated that the CMK‐3‐modified carbon electrode used in CE with amperometric detection was of convenient preparation, high sensitivity and good repeatability, which could be employed in the rapid determination of practical samples.  相似文献   

8.
Ballus CA  Meinhart AD  Bruns RE  Godoy HT 《Talanta》2011,83(4):1181-1187
Characterization of phenolic compounds in olive oil has not been achieved as yet, owing to the complexities of their chemical structures and analytical matrix. The aim of this work is to optimize and validate a method for simultaneous separation and quantification of 13 phenolic compounds from extra-virgin olive oil: tyrosol, hydroxytyrosol, oleuropein glycoside, ferrulic acid, p-coumaric acid, cinnamic acid, p-hydroxybenzoic acid, gallic acid, caffeic acid, luteolin, apigenin, vanillic acid and 3,4-dihydroxybenzoic acid. A statistical central composite design, response surface analysis and the simultaneous optimization method of Derringer and Suich were used to separate all the peaks. These multivariate procedures were efficient in determining the optimal separation condition, using five peak-pair resolutions and runtime as responses. The optimized method employed a fused-silica capillary of 50 μm i.d. × 60 cm effective length with extended light path, 50 mmol L−1 boric acid electrolyte, 10.2 pH, 25 °C, injection of 50 mbar for 25 s with application of reverse voltage (−30 kV for 5 s) before setting the running voltage (+30 kV) with detection at 210 nm and a run time of 12 min. Peak resolutions are found to be very sensitive to pH values outside the 10.15-10.25 range but acceptable electropherograms can be obtained for a wide range of boric acid concentrations within this pH interval.  相似文献   

9.
《Electrophoresis》2018,39(7):941-947
In this paper, β‐cyclodextrin (β‐CD) modified gold nanoparticles (AuNPs) coated open tubular column (OT column) was prepared for capillary electrochromatography. The open tubular column was constructed through self‐assembly of gold nanoparticles on 3‐mercaptopropyl‐trimethoxysilane (MPTMS) prederivatized capillary and subsequent modification of thiols β‐cyclodextrin (SH‐β‐CD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet visible spectroscopy were carried out to characterize the prepared open tubular column and synthesized gold nanoparticles. By comparing different coating times of gold nanoparticles and thiols β‐cyclodextrin, we got the optimal conditions for preparing the open tubular column. Also, the separation parameters were optimized including buffer pH, buffer concentration and applied voltage. Separation effectiveness of open tubular column was verified by the separation of four pairs of drug enantiomers including bifonazole, fexofenadine, omeprazole and lansoprazole, and satisfactory separation results were achieved for these analytes studied. In addition, the column showed good stability and repeatability. The relative standard deviation values less than 5% were obtained through intra‐day, inter‐day, and column‐to‐column investigations.  相似文献   

10.
Interface‐free two‐dimensional heart‐cutting capillary electrophoresis for two different classes of analytes (anionic and neutral) in a single capillary is presented. Simultaneous sample stacking and orthogonal separation were demonstrated. The anionic species were first analyzed by capillary zone electrophoresis in the first dimension. Then, the neutral compounds were separated in the second dimension by micellar electrokinetic chromatography using the common anionic surfactant sodium dodecyl sulfate. The first and second dimensions occurred automatically without changing the electrolyte and without polarity switching. Artificial mixtures (five anions and four neutral compounds) were successfully analyzed with sensitivity enhancement factors from 7 to 28. The orthogonal separation was complete within 8 min. Some analytical features and application to a spiked real river water sample were also studied.  相似文献   

11.
High resolution could be achieved for the enantiomers of acidic drugs, namely, sulindac, fenoprofen, ketoprofen, warfarin, and hexobarbital, in a buffer of pH 3 by the simultaneous addition of uncharged and charged β-cyclodextrin derivatives. The interaction of the analytes with the anionic sulfobutyl ether β-cyclodextrin provides the analytes with an adequate electrophoretic mobility whereas the interaction with various neutral β-cyclodextrins generates high enantioselectivity. Five neutral cyclodextrins, the native β-cyclodextrin, as well as methyl-, dimethyl-, trimethyl- and hydroxypropyl-β-cyclodextrin, were tested to enhance the enantioselectivity of the electrophoretic system. High resolution values and the shortest analysis times for the five drugs tested were achieved in a buffer made of 100 mM phosphoric acid adjusted to pH 3 with triethanolamine and containing dimethyl- or trimethyl-β-cyclodextrin in addition to sulfobutyl ether β-cyclodextrin.  相似文献   

12.
13.
A new chiral derivatizing reagent, dehydroabietylisothiocyante (DHAIC), was synthesized and used for the enantiomeric separation of chiral compounds in capillary electrophoresis (CE). The synthetic route to obtain DHAIC is described. The separation conditions for the chiral separation of several chiral compounds, such as protein amino acids and chiral drug DOPA were optimized. Best results for the chiral separation of DHAIC derivatized amino acids and DOPA were obtained in a running buffer consisted of 50 mM borate (pH 9.5), 5 mM sodium dodecyl sulphate (SDS) and 20% acetonitrile for amino acids and 60 mM Na2HPO4 (pH 8.0), 17 mM SDS and 25% acetonitrile for DOPA. Under the conditions studied, chiral separation of five amino acids including Ser, Val, Ala, Thr, Cys and a chiral drug DOPA as their diastereomeric DHAIC derivatives has been achieved by micellar electrokinetic chromatography (MEKC).  相似文献   

14.
A novel solid phase microextraction fiber was prepared for the first time by using a sol–gel technique with hydroxypropyl‐β‐cyclodextrin‐functionalized reduced graphene oxide as the fiber coating material. The results verified that the β‐cyclodextrin was successfully grafted onto the surface of reduced graphene oxide and the coating possessed a uniform folded and wrinkled structure. The performance of the solid phase microextraction fiber was evaluated by using it to extract nine volatile aromatic compounds from water samples before determination with gas chromatography and flame ionization detection. Some important experimental parameters that could affect the extraction efficiency such as the extraction time, extraction temperature, desorption temperature, desorption time, the volume of water sample solution, stirring rate, as well as ionic strength were optimized. The new method was validated to be effective for the trace analysis of some volatile aromatic compounds, with the limits of detection ranging from 2.0 to 8.0 ng/L. Single fiber repeatability and fiber‐to‐fiber reproducibility were in the range of 2.5–9.4 and 5.4–12.9%, respectively. The developed method was successfully applied to the analysis of three different water samples, and the recoveries of the method were in the range from 77.9 to 113.6% at spiking levels of 10, 100, and 1000 ng/L, respectively.  相似文献   

15.
《Electrophoresis》2017,38(9-10):1383-1390
We recently reported that a great variety of DNA oligonucleotides (ONs) used as chiral selectors in partial‐filling capillary electrophoresis (CE) exhibited interesting enantioresolution properties toward low‐affinity DNA binders. Herein, the sequence prerequisites of ONs for the CE enantioseparation process were studied. First, the chiral resolution properties of a series of homopolymeric sequences (Poly‐dT) of different lengths (from 5 to 60‐mer) were investigated. It was shown that the size increase‐dependent random coil‐like conformation of Poly‐dT favorably acted on the apparent selectivity and resolution. The base‐unpairing state constituted also an important factor in the chiral resolution ability of ONs as the switch from the single‐stranded to double‐stranded structure was responsible for a significant decrease in the analyte selectivity range. Finally, the chemical diversity enhanced the enantioresolution ability of single‐stranded ONs. The present work could lay the foundation for the design of performant ON chiral selectors for the CE separation of weak DNA binder enantiomers.  相似文献   

16.
Polystyrene (PS) nanoparticles coated by BSA, hereafter denoted as PS/BSA, were prepared and chemically immobilized for the first time onto a capillary inner wall for open‐tubular CEC (OTCEC). EOF and scanning electron micrography were used to characterize the prepared nanoparticle‐coated capillaries. To investigate the performance of the prepared columns in OTCEC, chiral separation of d ,l ‐tryptophan (dl ‐Trp) was performed in monolayer BSA‐modified capillary and PS/BSA nanoparticle‐coated columns. The results indicated that the nanoparticle‐modified column afforded a higher resolution compared with the monolayer type. Rapid enantioseparation of dl ‐Trp (within 3 min) was achieved with the PS/BSA‐immobilized column using an electroosmotic pump‐assisted CEC. Enantiomer separations of other compounds like dl ‐tyrosine and warfarin were also achieved with the column. Besides, run‐to‐run and column‐to‐column repeatabilities of the PS/BSA‐coated column in the chiral separation were systematically introduced.  相似文献   

17.
《Electrophoresis》2018,39(14):1808-1815
Poly(styrene‐co‐divinylbenzene)‐coated magnetic multiwalled carbon nanotube composite synthesized by in‐situ high temperature combination and precipitation polymerization of styrene‐co‐divinylbenzene has been employed as a magnetic sorbent for the solid phase extraction of antidepressants in human urine samples. Fluoxetine, venlafaxine, citalopram and sertraline were, afterwards, separated and determined by capillary electrophoresis with diode array detection. The presence of magnetic multiwalled carbon nanotubes in native poly(styrene‐co‐divinylbenzene) not only simplified sample treatment but also enhanced the adsorption efficiencies, obtaining extraction recoveries higher than 89.5% for all analytes. Moreover, this composite can be re‐used at least ten times without loss of efficiency and limits of detection ranging from 0.014 to 0.041 μg/mL were calculated. Additionally, precision values ranging from 0.08 to 7.50% and from 0.21 to 3.05% were obtained for the responses and for the migration times of the analytes, respectively.  相似文献   

18.
A capillary electrophoretic method for the enantioseparation of ofloxacin and its five related substances (potential impurities, indicated as impurities B–F) was developed using β‐cyclodextrin derivatives as chiral selectors. To our knowledge, there are no previous studies about using capillary electrophoresis for the separation of impurities B–D. Six β‐cyclodextrin derivatives including cationic (piperidine‐ and cyclohexylamine‐), neutral (dimethyl‐ and hydroxypropyl‐), and anionic (carboxymethyl‐ and sulfated‐) β‐cyclodextrin derivatives were tested and operational parameters such as buffer pH and concentration of β‐cyclodextrin derivatives were investigated. The best resolutions were all obtained with anionic β‐cyclodextrin derivatives: ofloxacin, impurities C–F could be best resolved with carboxymethyl‐β‐cyclodextrin at satisfactory resolutions of 8.27, 9.98, 5.92, 8.49 and 6.78, respectively, while for impurity B, a particularly impressive resolution value, up to 21.38, was observed using sulfated‐β‐cyclodextrin. The enhancement of enantioseparation observed for the tested analytes using anionic β‐cyclodextrin derivatives might be due to some favorable interaction between selectors and analytes. Given the fact that the selection of chiral selector depends on the structures of analytes, with the help of structural similarities and differences of the analytes, the structure–separation relationship was further discussed.  相似文献   

19.
Offline dispersive liquid‐liquid microextraction combined with online pressure‐assisted electrokinetic injection was developed to simultaneously enrich seven phenolic compounds in water samples, followed by determination using capillary electrophoresis, namely phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol. Several parameters affecting separation performance of capillary electrophoresis and the enrichment efficiency of pressure‐assisted electrokinetic injection and dispersive liquid‐liquid microextraction were systematically investigated. Under the optimal conditions, seven phenolic compounds were completely separated within 14 min and good enrichment factors were obtained of 61, 236, 3705, 3288, 920, 86, and 1807 for phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, respectively. Good linearity was attained in the range of 0.1–200 μg/L for 2,4‐dichlorophenol, 0.5–200 μg/L for 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, as well as 1–200 μg/L for phenol, with correlation coefficients (r) over 0.9905. The limits of detection and quantification ranging from 0.03–0.28 and 0.07–0.94 μg/L were attained. This two step enrichment method was potentially applicable for the rapid and simultaneous determination of phenolic compounds in water samples.  相似文献   

20.
This study investigated the use of ultrasound‐assisted extraction to improve the extraction efficiency of morphine, codeine and thebaine from the papaver plants. Extraction conditions such as type of solvent, temperature, duration, frequency and power level of ultrasonic were optimized and the influences of different parameters on resolution of alkaloids in CE were studied. The optimized condition for CE separation includes a sodium phosphate buffer (100 mM, pH 3.0) containing 5 mM α‐CD. The optimized extraction conditions for ultrasound‐assisted extraction was an extraction time of 1 h, an ultrasonic frequency of 60 kHz with water–methanol (80:20) at 40°C as the extraction solvent. The LOD for alkaloids was found to be 0.1 μg/mL at a signal‐to‐noise ratio of 3:1. The RSDs for peak areas were in the range of 1.4–4.4%. The amounts of opium alkaloids (mg/100 g dried sample) in four Iranian papaver plants were found to be in the range of 7.8–8.7 (morphine), 5.5–9.5 (codeine) and 1.4–10.4 (thebaine). It should be emphasized that no cleanup of the filtered extract was required; hence, direct determination after extraction drastically simplifies the analytical process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号