首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocellulose (NC) materials have some unique properties, which make them attractive as organic or inorganic supports for catalytic applications. Nanocatalysts with diameters of less than 100 nm are difficult to separate from the reaction mixture, therefore, magnetic nanoparticles (MNPs) were used as catalysts to overcome this problem. Fe3O4@NCs/BF0.2 as a green, bio‐based, eco‐friendly, and recyclable catalyst was synthesized and characterized using fourier‐transform infrared spectroscopy (FT‐IR), vibrating sample magnetometer (VSM), X‐ray diffraction (XRD), X‐ray fluorescence (XRF), Brunauer–Emmett–Teller (BET), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA) techniques. Fe3O4@NCs/BF0.2 was employed for the synthesis of 2,3‐dihydro‐1H‐perimidine derivatives via a reaction of 1,8‐diaminonaphthalene with various aldehydes at room temperature under solvent‐free conditions. The present procedure offers several advantages including a short reaction time, excellent yields, easy separation of catalyst, and environmental friendliness.  相似文献   

2.
Bimetallic silver and copper incorporated mesoporous MCM‐48 (Ag/CuO/MCM‐48) was synthesized by simple wet‐impregnation method. The knowledge about its structural properties was gathered by means of Fourier transform‐infrared, energy‐dispersive X‐ray, X‐ray diffraction, field emission‐scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller analyses. The catalytic activity of Ag/CuO/MCM‐48 was examined in the one‐pot three‐component reaction of 3‐(1‐methyl‐1H‐pyrrol‐2‐yl)‐3‐oxopropanenitrile, malononitrile and various aromatic aldehydes leading to novel pyran‐pyrrole hybrid derivatives in reduced reaction times (5–10 min) and excellent yields (88–97%). Application of Ag/CuO/MCM‐48 as a potent heterogeneous catalyst with good reusability up to five times, use of ethanol as an eco‐compatible medium and chromatography‐free work‐up are some crucial green aspects of this procedure.  相似文献   

3.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

4.
A novel Se/C nanocomposite with core‐shell structures has been prepared through a facile one‐pot microwave‐induced hydrothermal process. The new material consists of a trigonal‐Se (t‐Se) core and an amorphous‐C (a‐C) shell. The Se/C composite can be converted to hollow carbon capsules by thermal treatment. These products were characterized by transmission electron microscopy (TEM), powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), energy‐dispersive X‐ray (EDX) spectroscopy, and X‐ray photoelectron spectroscopy (XPS).  相似文献   

5.
In this work, for the first time, Solanum melongena plant extract was used for the green synthesis of Pd/MnO2 nanocomposite via reduction osf Pd(II) ions to Pd(0) and their immobilization on the surface of manganese dioxide (MnO2) nanoparticles (NPs) as an effective support. The synthesized nanocomposite were characterized by various analytical techniques such as Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDS) and UV–Vis spectroscopy. The catalytic activity of Pd/MnO2 nanocomposite was used as a heterogeneous catalyst for the one‐pot synthesis of 5‐substituted 1H‐tetrazoles from aryl halides containing various electron‐donating or electron‐withdrawing groups in the presence of K 4 [Fe (CN) 6 ] as non‐toxic cyanide source and sodium azide. The products were obtained in good yields via a simple methodology and easy work‐up. The nanocatalyst can be recycled and reused several times with no remarkable loss of activity.  相似文献   

6.
One‐dimensional (1D) CeO2/Bi2WO6 heterostructured nanofibers with a diameter of about 300 nm were successfully synthesized by using a straightforward strategy combining an electrospinning technique with a sintering process. The acquired products were characterized by thermogravimetric and differential scanning calorimetric (TG‐DSC), Fourier transform infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area measurements, and UV/Vis spectroscopy. The obtained CeO2/Bi2WO6 heterostructured nanofibers exhibited an excellent photocatalytic property for the degradation of Rhodamine B (RhB) dye driven by visible light due to the promoted separation of photoelectrons and holes and the large contact area between the photocatalyst and organic pollutant.  相似文献   

7.
In this paper, a novel TiO2 nanosheets assembled double‐wall hollow sphere (DHS)has been prepared successfully via hydrothermal treatment of SiO2@TiO2 with the assistant of CTAB.The prepared samples are characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron spin resonance (ESR), X‐ray diffraction (XRD) and X‐ray photoelectron spectra (XPS), etc.Results show that redeposited silica species play a key role in the formation of the double‐wall structure. The as‐synthesized DHS nanostructure exhibits a large surface area (417.6 m2 g‐1) and excellent mechanical strength. Furthermore, after decoration of Ag and calcination treatment, the double‐shelled TiO2/Ag heterostructures show an enhanced photocatalytic performance in the degradation of RhB under UV or visible light irradiations for the following reasons: the surface plasmon resonance effect of Ag, strong interaction between Ag and TiO2 nanosheets, large surface area, excellent adsorption capacityand unique double‐wall structure. On the basis of the experimental results, a possible mechanism for pollutantdegradation under visual light irradiation has been proposed.  相似文献   

8.
Ag3PO4 spherical particles were synthesized by a facile precipitation method using silver nitrate and Na2HPO4 as precursors. The as‐prepared samples had a high photocatalytic activity toward Rhodamine B (RhB) degradation under visible‐light illumination. With increasing recycling times the photocatalytic activity first increased and then decreased. Based on systematic characterization of particles by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), UV/Vis absorption spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), a possible mechanism responsible for the improvement and subsequent decline of the photocatalytic performance of Ag3PO4 is proposed. Ag3PO4 spherical particles recycled for four times showed the highest photocatalytic activity because, according to our mechanism, Ag nanoparticles deposited on Ag3PO4 acted as electron trapping centers to prevent photogenerated electron‐hole pairs from recombination. A further increase in the recycle times decreases the photocatalytic activity owing to the shielding effect by Ag layers on the surface of Ag3PO4. The results presented herein shed new light on the photostability of Ag3PO4 spherical particles and are potentially applicable to other photocatalytically active composites.  相似文献   

9.
Fe3O4@MCM‐41@Zr‐MNPs modified with piperazine is easily prepared and characterized using Fourier transform infrared spectroscopy (FT‐IR), X‐ray powder diffraction (XRD), N2 adsorption–desorption, Transmission electron microscopy (TEM), Energy‐dispersive X‐ray (EDX), Vibrating sample magnetometry (VSM) and Thermogravimetric analysis (TGA) techniques. The characterization results showed that Zr highly dispersed in the tetrahedral environment of silica framework and piperazine is successfully attached to the surface of the nanocatalyst in connection with zirconium. The prepared nanosized reagent (10–30 nm), shows excellent catalytic activity in the synthesis of tetrahydro‐4H‐chromene and pyrano[2,3‐d]pyrimidinone derivatives. All reactions are performed under mild and completely heterogeneous reactions conditions in high yields during short reaction times. On the other hand and due to its superparamagnetic nature the catalyst can be easily separated by the application of an external magnetic field and reused for several times.  相似文献   

10.
The immobilization of sulfonic acid on the surface of Fe3O4 magnetic nanoparticles (MNPs) as a novel acid nanocatalyst has been successfully reported. The morphological features, thermal stability, magnetic properties, and other physicochemical properties of the prepared superparamagnetic core–shell (Fe3O4@PFBA–Metformin@SO3H) were thoroughly characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy (EDS), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis–differential thermal analysis (TGA‐DTA), atomic force microscopy (AFM), dynamic light scattering (DLS), Brunauer–Emmett–Teller (BET), and vibrating sample magnetometer (VSM) techniques. It was applied as an efficient and reusable catalyst for the synthesis of 2‐(piperazin‐1‐yl) quinoxaline and benzimidazole derivatives via a one‐pot multiple‐component cascade reaction under green conditions. The results displayed the excellent catalytic activity of Fe3O4@PFBA–metformin@SO3H as an organic–inorganic hybrid nanocatalyst in condensation and multicomponent Mannich‐type reactions. The easy separation, simple workup, excellent stability, and reusability of the nanocatalyst and quantitative yields of products and short reaction time are some outstanding advantages of this protocol.  相似文献   

11.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   

12.
李宗木  徐法强 《中国化学》2005,23(3):337-340
Single-crystalline SnO2 nanowires have been successfully prepared in large scale on Au-coated silicon substrate by heating the mixture of self-made high-purity SnO2 powders and graphite powders at 900℃. Besides the line type nanowires some more features were observed. The products were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and Raman spectrum techniques. The results indicate that the tin dioxide nanowires have a rutile structure with diameters ranging from 30 to 120 nm and lengths up to several tens of micrometers. The possible mechanism of the growth and reaction for the nanowires was also discussed.  相似文献   

13.
Graphene oxide/Mg‐doped ZnO/tungsten oxide quantum dots composites (WQGOMZ) were prepared through co‐precipitation method, and were studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Fluorescence spectra (FL), and UV–vis diffuse reflection spectra. Furthermore, the photocatalytic activity of resultant WQGOMZ was evaluated under nature sunlight. Experimental results showed that WO3QDs can remarkably heighten the photocatalytic activity of GOMZ composite, in which is nearly 6.58 times higher than that of GOMZ composite. Simultaneously, WQGOMZ composites possess optical memory ability and maintain high photocatalytic stability for more than 40 days. The enhanced photocatalytic activity and optical memory ability are attributed to the effective synergistic effect between ZnO and WO3QDs.  相似文献   

14.
《中国化学会会志》2017,64(12):1392-1398
A nitrogen‐doped TiO2 (N‐TiO2) nanowire film was synthesized via a one‐pot hydrothermal method using triethylamine as nitrogen source. The effect of the concentration of the triethylamine on the films was evaluated. In addition, the N‐TiO2 nanowires were characterized using field‐emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet–visible spectroscopy. A 3.2× enhancement of the photocurrent for N‐TiO2 (0.6) was achieved over the as‐prepared TiO2 nanowire, under AM1.5G solar illumination. This was due to nitrogen doping, which could narrow the bandgap of titania to extend the adsorption of the catalyst to the visible light region.  相似文献   

15.
《中国化学会会志》2017,64(8):978-985
Alumina/titania composite aerogels with different titania contents were synthesized by the sol–gel process and supercritical ethanol drying. The structures and morphologies of synthesized aerogels were analyzed by X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetry, and N2 adsorption–desorption tests. Supercritical ethanol drying induced the crystallization of titania, which prompted the transformation of the structure from pseudoboehmite to γ‐Al2O3 . Reversely, alumina retarded the anatase‐to‐rutile transformation of titania. The content of titania significantly affected the structure and morphology of alumina/titania composite aerogels. A high content of titania (≥40%) resulted in the phase separation of titania particles, which grew to form the anatase phase octahedral particles with well‐developed facets. When the titania content was low, titania particles could be homogeneously dispersed in alumina particles to form spherical clusters with the poor crystallinity. Titania particles were in the anatase phase, and no rutile phase was formed until the temperature rose to 1000°C. In addition, titania addition resulted in a decrease in the specific surface area (SSA) of alumina aerogels because the SSA of titania was lower than that of alumina aerogels.  相似文献   

16.
Silver‐Gold alloy/diamond like carbon (Ag‐Au/DLC) nanocomposite films were prepared by co‐deposition of RF‐sputtering and RF‐PECVD on glass substrates by using acetylene gas and silver‐gold target. The deposition process was carried out at room temperature in one minute with the variable parameters of initial pressures and RF powers. X‐ray diffraction analysis demonstrated the formation of Ag/Au alloy nanoparticles with a face‐centered cubic (FCC) structure. Localized surface plasmon and optical properties of Ag‐Au alloy nanoparticles were studied by UV‐visible spectrophotometry which showed that increasing RF power and initial pressure cause a redshift in all samples. Moreover, the effect of RF power and initial pressure on the size and shape of nanoparticles were studied by 2D Atomic force microscopy images. Energy dispersive X‐ray spectroscopy revealed the formation of Ag‐Au/DLC nanoparticles and the percentages of C, Ag, Au and O in all samples. The applied method for Ag/Au alloy preparation is the one step and low‐cost method which makes the samples ready for sensing application.  相似文献   

17.
TiO2 thin films with various Mo concentrations have been deposited on glass and n‐type silicon (100) substrates by this radio‐frequency (RF) reactive magnetron sputtering at 400°C substrate temperature. The crystal structure, surface morphology, composition, and elemental oxidation states of the films have been analyzed by using X‐ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy, respectively. Ultraviolet‐visible spectroscopy has been used to investigate the degradation, transmittance, and absorption properties of doped and undoped TiO2 films. The photocatalytic degradation activity of the films was evaluated by using methylene blue under a light intensity of 100 mW cm−2. The X‐ray diffraction patterns show the presence of anatase phase of TiO2 in the developed films. X‐ray photoelectron spectroscopy studies have confirmed that Mo is present only as Mo6+ ions in all films. The Mo/TiO2 band gap decreases from ~3.3 to 3.1 eV with increasing Mo dopant concentrations. Dye degradation of ~60% is observed in Mo/TiO2 samples, which is much higher than that of pure TiO2.  相似文献   

18.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

19.
Herein, EuIII‐doped 3D mesoscopically ordered arrays of mesoporous and nanocrystalline titania are prepared and studied. The rare‐earth‐doped titania thin films—synthesized via evaporation‐induced self‐assembly (EISA)—are characterized by using environmental ellipsoporosimetry, electronic microscopy (i.e. high‐resolution scanning electron microscopy, HR‐SEM, and transmission electron microscopy, HR‐TEM), X‐ray diffraction, and luminescence spectroscopy. Structural characterizations show that high europium‐ion loadings can be incorporated into the titanium‐dioxide walls without destroying the mesoporous arrangement. The luminescence properties of EuIII are investigated by using steady‐state and time‐resolved spectroscopy via excitation of the EuIII ions through the titania host. Using EuIII luminescence as a probe, the europium‐ion sites can be addressed with at least two different environments within the mesoporous framework, namely, a nanocrystalline environment and a glasslike one. Emission fluctuations (5D07F2) are observed upon continuous UV excitation in the host matrix. These fluctuations are attributed to charge trapping and appear to be strongly dependent on the amount of europium and the level of crystallinity.  相似文献   

20.
Au porous nanotubes (PNTs) were synthesized by a templating technique that involves the chemical synthesis of Ag nanowire precursors, electroless surface modification with Au, and selective etching. A subsequent galvanic replacement reaction between [PtCl6]2? and residual Ag generates Ptdecorated Au porous nanotubes (Pt/Au PNTs), which represents a new type of selfsustained high surface area electrocatalysts with ultralow Pt loading. Structural characterizations with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Xray powder diffraction (XRD) reveal a novel nanoarchitecture with multimodal open porosity and excellent structural continuity and integrity. Cyclic voltammetry (CV) demonstrates that these Pt/Au PNTs possess very high electrocatalytic activity toward formic acid oxidation with enhanced tolerance to CO poisoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号