首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An operationally simple method to affect an atom‐transfer radical addition of commercially available ICH2Bpin to terminal alkenes has been developed. The intermediate iodide can be transformed in a one‐pot process into the corresponding cyclopropane upon treatment with a fluoride source. This method is highly selective for the cyclopropanation of unactivated terminal alkenes over non‐terminal alkenes and electron‐deficient alkenes. Due to the mildness of the procedure, a wide range of functional groups such as esters, amides, alcohols, ketones, and vinylic cyclopropanes are well tolerated.  相似文献   

2.
3.
Kinetic and spectroscopic analyses were performed to gain information about the mechanism of atom‐transfer radical reactions catalyzed by the complexes [RuCl2Cp*(PPh3)] and [RuClCp*(PPh3)2] (Cp*=pentamethylcyclopentadienyl), in the presence and in the absence of the reducing agent magnesium. The reactions of styrene with ethyl trichloroacetate, ethyl dichloroacetate, or dichloroacetonitrile were used as test reactions. The results show that for substrates with high intrinsic reactivity, such as ethyl trichloroacetate, the oxidation state of the catalyst in the resting state is +3, and that the reaction is zero‐order with respect to the halogenated compound. Furthermore, the kinetic data suggest that the metal catalyst is not directly involved in the rate‐limiting step of the reaction.  相似文献   

4.
We have found that an organic molecule as simple as p‐anisaldehyde efficiently catalyzes the intermolecular atom‐transfer radical addition (ATRA) of a variety of haloalkanes onto olefins, one of the fundamental carbon–carbon bond‐forming transformations in organic chemistry. The reaction requires exceptionally mild reaction conditions to proceed, as it occurs at ambient temperature and under illumination by a readily available fluorescent light bulb. Initial investigations support a mechanism whereby the aldehydic catalyst photochemically generates the reactive radical species by sensitization of the organic halides by an energy‐transfer pathway.  相似文献   

5.
A CoII/porphyrinate‐based macrocycle in the presence of a 3,5‐diphenylpyridine axial ligand functions as an endotopic ligand to direct the assembly of [2]rotaxanes from diazo and styrene half‐threads, by radical‐carbene‐transfer reactions, in excellent 95 % yield. The method reported herein applies the active‐metal‐template strategy to include radical‐type activation of ligands by the metal‐template ion during the organometallic process which ultimately yields the mechanical bond. A careful quantitative analysis of the product distribution afforded from the rotaxane self‐assembly reaction shows that the CoII/porphyrinate subunit is still active after formation of the mechanical bond and, upon coordination of an additional diazo half‐thread derivative, promotes a novel intercomponent C?H insertion reaction to yield a new rotaxane‐like species. This unexpected intercomponent C?H insertion illustrates the distinct reactivity brought to the CoII/porphyrinate catalyst by the mechanical bond.  相似文献   

6.
7.
The first well‐controlled aqueous atom‐transfer radical polymerization (ATRP) conducted in the open air is reported. This air‐tolerant ATRP was enabled by the continuous conversion of oxygen to carbon dioxide catalyzed by glucose oxidase (GOx), in the presence of glucose and sodium pyruvate as sequential sacrificial substrates. Controlled polymerization using initiators for continuous activator regeneration (ICAR) ATRP of oligo(ethylene oxide) methyl ether methacrylate (OEOMA, Mn=500) yielded polymers with low dispersity (1.09≤?≤1.29) and molecular weights (MWs) close to theoretical values in the presence of pyruvate. Without added pyruvates, lower MWs were observed due to generation of new chains by H2O2 formed by reaction of O2 with GOx. Successful chain extension of POEOMA500 macroinitiator with OEOMA300 (?≤1.3) and Bovine Serum Albumin bioconjugates (?≤1.22) confirmed a well‐controlled polymerization. The reactions in the open air in larger scale (25 mL) were also successful.  相似文献   

8.
A ruthenium carbene complex bearing azobenzene functionality is reported. The complex exists in the form of two isomers differing by the size of the chelate ring. Both isomers were isolated by applying kinetic or thermodynamic control during the synthesis and characterized by X‐ray diffraction analysis. The isomerization of the complex was studied by UV/Vis spectroscopy. The stable isomer was tested as a catalyst in olefin metathesis. The complex was activated at about 100 °C to promote ring‐closing and ring‐opening polymerization metathesis reactions. The activation took place also at room temperature under middle ultraviolet radiation.  相似文献   

9.
An unexpected cationic bis‐N‐heterocyclic carbene (NHC) benzylidene ether based ruthenium complex ( 2 a ) was prepared through the double incorporation of an unsymmetrical unsaturated N‐heterocyclic carbene (U2‐NHC) ligand that bore an N‐substituted cyclododecyl side chain. The isolation and full characterization (including X‐ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring‐closing metathesis, which could be “switched on” under acidic conditions.  相似文献   

10.
11.
12.
A comprehensive mathematical model for atom transfer radical copolymerization in a batch reactor is presented using the concept of pseudo‐kinetic rate constants and the method of moments. The model describes molecular weight, monomer conversion, polydispersity index, and copolymer composition as a function of polymerization time. Model predictions were compared with experimental data for styrene and butyl acrylate copolymerization and excellent agreement was obtained. We have also tested the model with styrene‐acrylonitrile copolymerization data obtained in our laboratory. Finally, we used the model to study the effect of comonomer reactivity ratio, feed composition, activation and deactivation rate constants on the copolymer composition.

  相似文献   


13.
14.
The transition‐metal‐catalyzed direct synthesis of amides from alcohols and amines is herein demonstrated as a highly environmentally benign and atom‐economic process. Among various catalyst systems, in situ generated N‐heterocyclic carbene (NHC)‐based ruthenium (Ru) halide catalyst systems have been proven to be active for this transformation. However, these existing catalyst systems usually require an additional ligand to achieve satisfactory results. In this work, through extensive screening of a diverse variety of NHC precursors, we discovered an active in situ catalyst system for efficient amide synthesis without any additional ligand. Notably, this catalyst system was found to be insensitive to the electronic effects of the substrates, and various electron‐deficient substrates, which were not highly reactive with our previous catalyst systems, could be employed to afford the corresponding amides efficiently. Furthermore, mechanistic investigations were performed to provide a rationale for the high activity of the optimized catalyst system. NMR‐scale reactions indicated that the rapid formation of a Ru hydride intermediate (signal at δ=?7.8 ppm in the 1H NMR spectrum) after the addition of the alcohol substrate should be pivotal in establishing the high catalyst activity. Besides, HRMS analysis provided possible structures of the in situ generated catalyst system.  相似文献   

15.
16.
A novel mild, visible‐light‐induced palladium‐catalyzed hydrogen atom translocation/atom‐transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5‐HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo‐ and heterocyclic structures.  相似文献   

17.
18.
19.
Batch and semibatch styrene polymerizations are carried out using a heterogeneous ATRP catalyst system that provides excellent molecular‐weight control. The observed initiator efficiency is lower for semibatch operation due to the high initiator concentrations required to make a low‐MW polymer. Experiments verified that the insoluble metal complex does not participate in the polymerization and that Cu(I) solubility is an order of magnitude higher than that of Cu(II). A mechanistic model, using kinetic coefficients from literature and the solubility data from this study, provides a good representation of the experimental results.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号