首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Synthesis and characterization of a novel, multifunctional, solvent‐free room‐temperature liquid based on alkylated double‐decker lutetium(III) phthalocyanine (Pc2Lu) are described. Lowering of the melting point and viscosity of intrinsically solid Pc2Lu compounds has been achieved through the attachment of flexible, bulky, and long branched‐alkyl chains, that is, thio‐2‐octyldodecyl, to the periphery of the Pc2Lu unit. The embedded Pc2Lu unit maintains its inherent molecular functions, such as spin‐active nature and electrochromic behavior in the liquid state. Comparison of the properties with a solid‐like Pc2Lu derivative, functionalized with shorter alkyl chains, that is, thio‐2‐ethylhexyl, underlines the importance of the hampering effect on the π–π interactions of neighboring Pc2Lu molecules by bulkier and longer branched‐alkyl chains. This study could possibly pave the way for novel multifunctional liquids whose spin‐activities are associated with their rheological or optoelectronic properties.  相似文献   

2.
Double‐decker complexes of lanthanide cations can be readily prepared with tetraazaporphyrins (porphyrazines). We have synthesized and characterized a series of neutral double‐decker complexes [Ln(OETAP)2] (Ln=Tb3+, Dy3+, Gd3+, Y3+; OETAP=octa(ethyl)tetraazaporphyrin). Some of these complexes show analogous magnetic features to their phthalocyanine (Pc) counterparts. The Tb3+ and Dy3+ derivatives exhibit single‐molecule magnet (SMM) behavior with high blocking temperatures over 50 and 10 K, respectively. These results confirm that, in double‐decker complexes that involve Tb or Dy, the (N4)2 square antiprism coordination mode has an important role in inducing very large activation energies for magnetization reversal. In contrast with their Pc counterparts, the use of tetraazaporphyrin ligands endows the presented [Ln(OETAP)2] complexes with extraordinary chemical versatility. The double‐decker complexes that exhibit SMM behavior are highly soluble in common organic solvents, and easily processable even through sublimation.  相似文献   

3.
The asymmetric unit of the title compound, {[Pb(C4O4)(C12H8N2)2(H2O)]·2H2O}n, contains one squarate dianion, two phenanthroline (phen) ligands and one aqua ligand all coordinated to Pb, and two solvent water mol­ecules. The eight‐coordinate Pb metal ion displays a distorted bicapped trigonal–prismatic coordination environment, defined by three squarate O atoms, four N atoms from two chelating phen ligands and one O atom from the coordinated water mol­ecule. The crystal structure contains chains of squarate‐1,2,3‐bridged PbII ions running in the [010] direction. These polymeric chains are linked to one another via offset face‐to‐face π–π inter­actions between the phen ligands, which lead to a two‐dimensional network extending along the (001) plane. The crystal structure is also stabilized by O—H⋯O inter­molecular hydrogen‐bond inter­actions, forming a three‐dimensional network.  相似文献   

4.
Abstract. Sodium ethene‐bis‐nitrobenzenesulfonate, [Na2(ENS) · 6H2O]n( 1 ) was synthesized through coupling reaction of o‐nitrotoluenesulfonic acid in NaOH solution and characterized by single crystal X‐ray diffraction, elemental analysis, IR and 1H NMR spectroscopy, XRPD, DSC and TGA (where ENS2– = ethene‐bis‐nitrobenzenesulfonate). The asymmetrical unit of ( 1 ) consists of two octahedral NaI ions, and the neighboring metal centers are bridged by μ2 water molecules resulting in the formation of an inorganic tetranuclear unit. The tetranuclear units were connected through the ENS2– ligands into a 2D topology net. The weak π–π stacking and H‐bonding interactions further stabilized the structure. The crystals of (C7H6NO5S) · (H5O2)+ ( 2 ) were obtained by post‐processing the unreacted raw material to recycle. Furthermore, the rigidity and the conjugation effect of the aromatic system in compound 1 were increased through the coordination interactions of metal atoms to ligands, resulting in the emission coming from ligand enhanced with red‐shifting about 9 nm of the maximal wavelength. The conjugation effects and the steric arrangement of the substituent groups play the main role to the luminescence intensity and red‐shift effect.  相似文献   

5.
In the novel title six‐coordinate cadmium complex, [Cd(S2O3)(C12H8N2)]n, the anion binds to three different six‐coordinate cationic centres through all four external atoms, an unprecedented coordination mode for thio­sulfate metal‐organic complexes. This connectivity leads to strongly linked dimers, connected to form interleaved double chains, which in turn interact through remarkably short π–π bonds between their phenanthroline groups.  相似文献   

6.
New lead(II)‐saccharin complexes, [Pb(sac)2(pym)] (1) and [Pb(sac)2(pydm)] (2) (sac = saccharinate anion; pym = 2‐pyridylmethanol; pydm = pyridine‐2, 6‐dimethanol) were synthesized and characterized by IR spectroscopy and single crystal X‐ray diffractometry. Complex 1 crystallizes in the monoclinic P21/c space group with Z = 4, while the crystals of complex 2 are extremely X‐ray sensitive and decompose by the X‐ray beam within one day. Pym and pydm act as bi‐ and tridentate ligands, respectively. Most important feature of the complexes is non‐equivalent coordination of the sac ligands to the lead(II) atom. In the complex 1 , the sac ligands coordinate to the lead(II) ion in two distinct manners. One sac ligand behaves as a bridge between the lead(II) atoms through its N and carbonyl O atoms, whereas the other sac ligand acts as a bidentate chelating ligand through its N and carbonyl O atoms which is bicoordinating and also bridges the metal atoms to achieve the seven‐coordination. The structure is built up of three‐dimensional chains formed by the bridging of the PbN3O2 units and also held intermolecular hydrogen bonds. The IR spectra of the complexes were discussed in detail.  相似文献   

7.
In the title complex, [Ag(NO3)(C14H14N4S4)]n, the AgI atom lies on a twofold axis and shows a distorted tetrahedral coordination, comprised of two N‐atom donors from two thia­diazole groups of separate ligands and two O‐atom donors from one nitrate ligand. Each bis­(thio­ether) ligand also lies on a twofold axis and bridges two adjacent Ag atoms to form an infinite chain along the c axis, with an Ag⋯Ag separation of 11.462 (4) Å. Adjacent one‐dimensional chains are further linked into double‐chain motifs through weak Ag⋯S and π–π stacking interactions.  相似文献   

8.
The synthesis and self‐assembly behavior of porphyrin–polypyridyl ruthenium(II) hybrid, which consists of a flexible alkyl chain attached with two conjugated moieties is described. The electronic absorption spectrum and emission spectra show that the [C8‐TPP‐(ip)Ru(phen)2](ClO4)2, abbreviated as (C8ip)TPPC has optical properties. Scanning tunneling microscopy (STM) studies found that the π–π interaction and metal–ligand interaction allow (C8ip)TPPC to form self‐assembled structure and have an edge‐on orientation on the highly oriented pyrolytic graphite (HOPG) surface. The multidentate structure in (C8ip)TPPC molecules act as linkers between the molecules and form metal–ligand coordination, which forces the assembly process in the direction of stable columnar arrays. In addition, although the sample was stored for two months in ambient conditions, STM experiments showed that the order of (C8ip)TPPC self‐assembly only slightly decreased which indicates that the self‐assembled monolayer is stable. This work demonstrates that introducing a metal‐ligand in the porphyrin‐polypyridyl compound is a useful strategy to obtain novel surface assemblies.  相似文献   

9.
In the title compound, [Cu(C10H4O8)(C12H8N2)]n, the CuII cation has a four‐coordination environment completed by two N atoms from one 1,10‐phenanthroline (phen) ligand and two O atoms belonging to two di­hydrogen benzene‐1,2,4,5‐­tetra­carboxyl­ate anions (H2TCB2−). There is a twofold axis passing through the CuII cation and the centre of the phen ligand. The [Cu(phen)]2+ moieties are bridged by H2TCB2− anions to form an infinite one‐dimensional coordination polymer with a zigzag chain structure along the c axis. A double‐chain structure is formed by hydrogen bonds between adjacent zigzag chains. Furthermore, there are π–π stacking inter­actions between the phen ligands, with an average distance of 3.64 Å, resulting in a two‐dimensional network structure.  相似文献   

10.
A coordination polymer [Ba12(btc)8(H2O)23] ( 1 ) was obtained by self‐assembly of the corresponding metal carbonate with benzene‐1, 2, 3‐tricarboxylic acid ligand (H3btc), and its structure was determined by single‐crystal X‐ray diffraction studies. The results revealed that complex 1 has a three dimensional structure. In 1 , the btc3– anions adopt four different conformation and coordination modes. Bridging btc3– anions and μ2‐bridging water molecules connect BaII ions to generate a two dimensional layer. Further, μ2‐bridging coordinated water molecules connect the BaII ions of neighboring layers to form a three dimensional structure. Additionally, the luminescent property and thermal stability of 1 were investigated.  相似文献   

11.
The title complex, [RhBr(C8H12)(C24H19F5N2)], has a distorted pseudo‐square‐planar geometry. The Rh—C bond distance between the N‐heterocyclic ligand and the metal atom is 2.022 (3) Å. The angle between the carbene heterocycle and the coordination plane is 75.60 (11)°. It is shown that the average Rh—C(cyclo­octa­diene) distance is linearly dependent on the Rh—C(imidazole) distance in this type of compound. The crystal structure contains one intra­molecular and two inter­molecular types of C—H⋯F inter­actions, as well as one type of π–π stacking inter­action.  相似文献   

12.
The asymmetric unit of the title compound, [Cd(C8H4O4)(C17H8ClN5)(H2O)]n, contains one CdII atom, two half benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, one 11‐chloropyrido[2′,3′:2,3]pyrimidino[5,6‐f][1,10]phenanthroline (L) ligand and one coordination water molecule. The 1,4‐bdc ligands are on inversion centers at the centroids of the arene rings. The CdII atom is six‐coordinated by two N atoms from one L ligand, three carboxylate O atoms from two different 1,4‐bdc ligands and one water O atom in a distorted octahedral coordination sphere. Each CdII center is bridged by the 1,4‐bdc dianions to give a one‐dimensional chain. π–π stacking interactions between L ligands of neighboring chains extend adjacent chains into a two‐dimensional supramolecular (6,3) network. Neighboring (6,3) networks are interpenetrated in an unusual inclined mode, resulting in a three‐dimensional framework. Additionally, the water–carboxylate O—H...O hydrogen bonds observed in the network consolidate the interpenetrating nets.  相似文献   

13.
Double‐decker complexes based on single‐molecule magnets (SMMs) are a class of highly promising molecules for applications in molecular spintronics, wherein control of both the ligand oxidative states and the 2D supramolecular structure on carbon materials is of great importance. This study focuses on the synthesis and study of 2,3,7,8,12,13,17,18‐octaethylporphyrin (OEP)–TbIII double‐decker complexes with different electronic structures comprising protonated, anionic, and radical forms. Magnetic susceptibility measurements revealed that only the anionic and radical forms of the OEP–TbIII double‐decker complexes exhibited SMM properties. The barrier heights for magnetic moment reversal were estimated to be 207 and 215 cm?1 for the anionic and radical forms, respectively. Scanning tunneling microscopy (STM) investigations revealed that these OEP–TbIII complexes form well‐ordered monolayers upon simple dropcasting from dilute dichloromethane solutions. All three complexes form an isomorphic pseudo‐hexagonal 2D pattern, regardless of the differences in the electronic structures of their porphyrin–Tb cores. This finding is of interest for SMM technology as ultrathin films of these materials undergoing chemical transformations will not require any detrimental reorganization. Finally, we demonstrate self‐assembly of the protonated 5,15‐bisdodecylporphyrin (BDP)–TbIII double‐decker complex as an example of successful supramolecular design to achieve controlled alignment of SMM‐active sites.  相似文献   

14.
In the title compound, [Pb(C6H4NO2)(N3)(H2O)]n, the Pb ion is seven‐coordinated by three N atoms from three azide ligands, two O atoms from two isonicotinate (inic) ligands and two O atoms from two coordinated water molecules, forming a distorted monocapped triangular prismatic coordination geometry. Each azide ligand bridges three PbII ions in a μ1,1,3 coordination mode to form a two‐dimensional three‐connected 63 topology network extending in the bc plane. The carboxylate group of the inic unit and the aqua ligand act as coligands to bridge PbII ions. Adjacent two‐dimensional layers are connected by hydrogen‐bonding interactions between the isonicotinate N atom and the water molecule, resulting in an extended three‐dimensional network. The title complex is the first reported coordination polymer involving a p‐block metal, an azide and a carboxylate.  相似文献   

15.
The design and synthesis of metal coordination and supramolecular frameworks containing N‐donor ligands and dicyanidoargentate units is of interest due to their potential applications in the fields of molecular magnetism, catalysis, nonlinear optics and luminescence. In the design and synthesis of extended frameworks, supramolecular interactions, such as hydrogen bonding, π–π stacking and van der Waals interactions, have been exploited for molecular recognition associated with biological activity and for the engineering of molecular solids.The title compound, [Ag(CN)(C12H12N2)]n, crystallizes with the AgI cation on a twofold axis, half a cyanide ligand disordered about a centre of inversion and half a twofold‐symmetric 5,5′‐dimethyl‐2,2′‐bipyridine (5,5′‐dmbpy) ligand in the asymmetric unit. Each AgI cation exhibits a distorted tetrahedral geometry; the coordination environment comprises one C(N) atom and one N(C) atom from substitutionally disordered cyanide bridging ligands, and two N atoms from a bidentate chelating 5,5′‐dmbpy ligand. The cyanide ligand links adjacent AgI cations to generate a one‐dimensional zigzag chain. These chains are linked together via weak nonclassical intermolecular interactions, generating a two‐dimensional supramolecular network.  相似文献   

16.
A new 3D hemidirected mixed‐ligand lead(II) coordination polymer with the ligand 1,2‐di(4‐pyridyl)ethane bpa) and the two metal coordinated anions nitrate and thiocyanate, [Pb2(bpa)2(SCN)3(NO3)]n ( 1 ), has been synthesized and characterized by CHN elemental analysis, IR‐, 1H‐ and 13C NMR spectroscopy. The single crystal X‐ray data of compound 1 show that the complex is a three‐dimensional coordination polymer with two different Pb atoms with stereoactive electron lone pairs and six‐ and five‐coordinate hemidirected geometries, respectively.  相似文献   

17.
A non‐covalent double‐decker binding strategy is employed to construct functional supramolecular single‐wall carbon nanotubes (SWCNT)–tetrapyrrole hybrids capable of undergoing photoinduced electron transfer and performing direct conversion of light into electricity. To accomplish this, two semiconducting SWCNTs of different diameters (6,5 and 7,6) were modified via π–π stacking of pyrene functionalized with an alkyl ammonium cation (PyrNH3+). Such modified nanotubes were subsequently assembled via dipole–cation binding of zinc porphyrin with one ( 1 ) or four benzo‐18‐crown‐6 cavities ( 2 ) or phthalocyanine with four benzo‐18‐crown‐6 cavities at the ring periphery ( 3 ), employed as visible‐light photosensitizers. Upon charactering the conjugates using TEM and optical techniques, electron transfer via photoexcited zinc porphyrin and phthalocyanine was investigated using time‐resolved emission and transient absorption techniques. Higher charge‐separation efficiency is established for SWCNT(7,6) with a narrow band gap than the thin SWCNT(6,5) with a wide band gap. Photoelectrochemical studies using FTO/SnO2 electrodes modified with these donor–acceptor conjugates unanimously demonstrated the ability of these conjugates to convert light energy into electricity. The photocurrent generation followed the trend observed for charge separation, that is, incident‐photon‐to‐current efficiency (IPCE) of a maximum of 12 % is achieved for photocells with FTO/SnO2/SWCNT(7,6)/PyrNH3+: 1 .  相似文献   

18.
The complex [Pb(H2O)(μ‐OAc)(μ‐sac)]n with acetate (OAc) and saccharinate (sac) ligands was characterized by IR, elemental analysis and X‐ray crystallography. The mixed‐anion lead(II) complex crystallizes in the triclinic crystal system with the space group of P1¯. The single crystal X‐ray analysis shows that the complex is a coordination polymer in which the lead(II) ions have a highly distorted pentagonal bipyramidal coordination geometry. Lead(II) ions are bridged by carboxylate groups in a zigzag arrangement forming one‐dimensional infinite chains, which are also linked by sac bridges and aromatic π‐π contacts between the adjacent phenyl rings of sac ligands, resulting in a three‐dimensional network. One water molecule coordinates the lead(II) ion and also forms weak hydrogen bonds with the sulfonyl oxygen atoms of the neighboring sac ligands. The sac ligand acts as a bridging ligand through the nitrogen and carbonyl oxygen atoms, while the carboxylate moiety of the acetate ligand shows an unusual (bidentate, and bridging) coordination behaviour, which was observed for the first time in the structure.  相似文献   

19.
In the title complex, [Cu2(C10H2O8)(C10H8N2)2]n, the CuII cation has a four‐coordinated environment, completed by two carboxyl O atoms belonging to two 1,2,4,5‐benzene­tetra­carboxyl­ate anions (TCB4−) and two N atoms from one 2,2′‐bi­pyridine (2,2′‐bipy) ligand, forming a distorted square‐planar geometry. The [Cu(2,2′‐bipy)]2+ moieties are bridged by TCB4− anions, which lie about inversion centres, forming an infinite one‐dimensional coordination polymer with a double‐chain structure along the a axis. A two‐dimensional network structure is formed via a face‐to‐face π–π interaction between the 2,2′‐bipy rings belonging to two adjacent double chains, at a distance of approximately 3.56 Å.  相似文献   

20.
The geometries and energetics of complexes of Hg(II) and Pb(II) with sulfur‐ and aminopyridine‐containing chelating resin including crosslinked polystyrene immobilizing 2‐aminopyridine via sulfur‐containing (PVBS‐AP), sulfoxide‐containing (PVBSO‐AP), and sulfone‐containing (PVBSO2‐AP) spacer arms have been investigated theoretically, and thus interactions of the metal ions with chelating resins were evaluated. The results indicate that PVBS‐AP behaves as a tridentate ligand to coordinate with the metal ions by S and two N atoms to form chelating compounds with S atom playing a dominant role in the coordination, whereas PVBSO‐AP and PVBSO2‐AP interact with metal cations, respectively, in a tricoordinate manner by O and two N atoms forming chelating complexes. Furthermore, it is revealed that O and N2 atoms of PVBSO‐AP are the main contributor of coordination to Hg(II), whereas N2 atom of PVBSO2‐AP is mainly responsible for the coordination to Hg(II). For PVBSO‐AP‐Pb2+ and PVBSO2‐AP‐Pb2+ complex, the coordination is dominated by the synergetic effect of N1, N2, and O atoms. Natural bond orbital and second‐order perturbation analyses suggest that the charge transfer from the chelating resins to metal ions is mainly dominated by the interactions of lone pair of electrons of the donor atoms with the unoccupied orbitals of metal ions. Hg(II) complexes exhibit larger binding energies than the corresponding Pb(II) complexes, implying the chelating resins exhibit higher affinity toward Hg(II), which is consistent with the experimental results. Combined the theoretical and experimental results, further understanding of the structural information of the complexes and the coordination mechanism was achieved. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号