首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The previously described chiral 2‐acyloxathianes 5 (Scheme I) are used in two different enantioselective syntheses of γ‐butyrolactones. In one synthesis, Grignard addition, cleavage and reduction to carbinols RR'C(OH)CH2OH is followed by tosylation, malonate homologation, lactonization, and removal of the carbomethoxy group to give optically active γ‐lactones. A modification of this synthesis (Scheme I) leads to optically active α‐methylene‐γ‐lactones. In the second synthesis, reaction of a bromomagnesium enolate with ketones 5 leads to β‐hydroxyesters, which, by appropriate sequences of reduction and cleavage (Scheme II) are converted to optically active α‐ or β‐hydroxy‐γ‐lactones.  相似文献   

2.
Natural products containing an α‐methylene‐γ‐butyrolactone moiety, mainly of the sesquiterpene type, are widely observed in plants, which upon coming into contact with skin, will induce major skin toxicological side effects or phytodermatitis. Indeed two main dermatological pathologies have been associated with a skin exposure to molecules containing an α‐methylene‐γ‐butyrolactone moiety: allergic contact dermatitis (ACD) and chronic actinic dermatitis (CAD). ACD is an immunologically based disease resulting from modifications of epidermal proteins by sensitizers or haptens. Indeed, α‐methylene‐γ‐butyrolactones are highly electrophilic structures that can act as Michael acceptors towards nucleophilic residues of proteins. Cysteine and lysine are the most modified residues leading, in the case of enantiomerically pure lactones, to the formation of diastereomeric adducts. This chemical enantioselectivity induces an enantiospecificity of the allergic reaction, i.e., an individual sensitized to one enantiomer will not develop clinical symptoms when exposed to the other enantiomer and vice versa. Sesquiterpene lactones have been also associated with another pathology that involves UV irradiation and DNA modifications. Interestingly, it was found that α‐methylene‐γ‐butyrolactones, in addition to their electrophilic properties, were highly photoreactive molecules able to react with thymine/thymidine to form [2 + 2] photoadducts in very high yields. In all cases a syn regioselectivity was observed, probably associated with the polarization of the exomethylenic bond. This high photoreactivity of α‐methylene‐γ‐butyrolactones towards thymidine could be an explanation of the progressive evolution of allergic contact dermatitis towards chronic actinic dermatitis. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 000–000; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200900013  相似文献   

3.
An efficient nickel(0)‐catalyzed highly regio‐ and stereoselective hydrocarboxylation of homopropargylic alcohols with ZnEt2 in the presence of CO2 (1 atm, balloon) to synthesize α‐alkylidene‐γ‐butyrolactones is described. The catalyst is highly active and can be applied for the synthesis of (optically active) mono‐ or bicyclic α‐alkylidene‐γ‐butyrolactones with excellent regio‐ and stereoselectivity and good functional group tolerance. The potential of the reaction has been demonstrated in the first synthesis of (±)‐heteroplexisolide E.  相似文献   

4.
The optically active β‐hydroxyl‐γ‐butyrolactones were synthesized from nonchiral starting material by employing reductive cleavage reaction, sharpless asymmetric epoxidation and dihydroxylation, and Lewis acid‐catalysed cyclization as key steps. This strategy can be used to prepare many chiral β‐hydroxyl‐γ‐butyrolactone analogues.  相似文献   

5.
The reactions of 2‐amino‐4,5‐dihydro‐3‐furancarboxarnides 1a,b with cyanomethylene compounds (such as alkyl cyanoacetates and malononitrile) gave the corresponding ring‐opened products 2a‐f. Compounds 2a‐d reacted with methanesulfonic acid to give the corresponding α‐alkylidene‐γ‐butyrolactones 3a‐d. On the other hand, treatment of 2e,f with methanesulfonic acid yielded 3‐pyridinecarbonitrile derivatives 4a,b.  相似文献   

6.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

7.
Xa He  H‐Yan Lu  Guo‐Sheng Liu 《中国化学》2001,19(12):1285-1288
In the presence of CuCl2, N‐(2′, 4′‐dienyl)‐2‐alkynamides can be converted to α‐alkylidene‐σ‐butyrolactams under the catalysis of palladium(II). In this reaction, CuCl2 is used to oxidize Pd(0) to regenerate Pd(II), or the carbon‐palladium bond is quenched by the oxidative cleavage reaction of CuCl2.  相似文献   

8.
α‐Amino phosphonic acid derivatives are considered to be the most important structural analogues of α‐amino acids and have a very wide range of applications. However, approaches for the catalytic asymmetric synthesis of such useful compounds are very limited. In this work, simple, efficient, and versatile organocatalytic asymmetric 1,2‐addition reactions of α‐isothiocyanato phosphonate were developed. Through these processes, derivatives of β‐hydroxy‐α‐amino phosphonic acid and α,β‐diamino phosphonic acid, as well as highly functionalized phosphonate‐substituted spirooxindole, can be efficiently constructed (up to 99 % yield, d.r. >20:1, and >99 % ee). This novel method provides a new route for the enantioselective functionalization of α‐phosphonic acid derivatives.  相似文献   

9.
A concise protocol for the synthesis of α‐methylene‐β‐hydroxy‐γ‐carboxy‐γ‐lactams has been described via alkylation of amino acid derived iminoesters with α‐bromomethylmethacrylate, followed by allylic hydroxylation. All the synthesized compounds have been evaluated for their cytotoxicity on multiple myeloma cancer cell lines.  相似文献   

10.
Herein, the first example of chloropalladation‐initiated asymmetric intermolecular carboesterification of alkenes with alkynes by using chiral amine auxiliaries is reported. The use of (1S,2S)‐N1,N1‐dimethylcyclohexane‐1,2‐diamine auxiliaries is essential for providing α‐methylene‐γ‐lactones products in moderate to high yields and excellent enantioselectivities at room temperature. Moreover, the chiral amine auxiliaries can be readily removed by hydrolysis during the reaction process to keep the absolute configuration. This oxygen‐ and water‐promoted asymmetric reaction opens a new window to study asymmetric processes in halopalladation reactions.  相似文献   

11.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

12.
Fragmentation reactions of β‐hydroxymethyl‐, β‐acetoxymethyl‐ and β‐benzyloxymethyl‐butenolides and the corresponding γ‐butyrolactones were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) using collision‐induced dissociation (CID). This study revealed that loss of H2O [M + H ?18]+ is the main fragmentation process for β‐hydroxymethylbutenolide (1) and β‐hydroxymethyl‐γ‐butyrolactone (2). Loss of ketene ([M + H ?42]+) is the major fragmentation process for protonated β‐acetoxymethyl‐γ‐butyrolactone (4), but not for β‐acetoxymethylbutenolide (3). The benzyl cation (m/z 91) is the major ion in the ESI‐MS/MS spectra of β‐benzyloxymethylbutenolide (5) and β‐benzyloxymethyl‐γ‐butyrolactone (6). The different side chain at the β‐position and the double bond presence afforded some product ions that can be important for the structural identification of each compound. The energetic aspects involved in the protonation and gas‐phase fragmentation processes were interpreted on the basis of thermochemical data obtained by computational quantum chemistry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Iodobenzene‐catalyzed synthesis of α‐azidoketones and α‐thiocyanatoketones from aryl ketones with MCPBA as a cooxidant is described. The method is simple, rapid and practical, generating α‐azidoketones and α‐thiocyanatoketones from the aryl ketone without isolation of α‐tosyloxyketones in good to excellent yields.  相似文献   

14.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

15.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

16.
A catalytic asymmetric intramolecular homologation of simple ketones with α‐diazoesters was firstly accomplished with a chiral N,N′‐dioxide–Sc(OTf)3 complex. This method provides an efficient access to chiral cyclic α‐aryl/alkyl β‐ketoesters containing an all‐carbon quaternary stereocenter. Under mild conditions, a variety of aryl‐ and alkyl‐substituted ketone groups reacted with α‐diazoester groups smoothly through an intramolecular addition/rearrangement process, producing the β‐ketoesters in high yield and enantiomeric excess.  相似文献   

17.
A carbonylative α‐arylation process employing unactivated nitriles for the first time is described. The reaction tolerates a range of (hetero)aryl iodides and several nitrile coupling partners. No prefunctionalization of the nitriles is necessary and the resulting β‐ketonitriles are obtained in good to excellent yields. The methodology also allows for a convenient 13C‐labelling of the generated carbonyl moiety.  相似文献   

18.
The first aminocatalyzed α‐alkylation of α‐branched aldehydes with benzyl bromides as alkylating agents has been developed. Using a sterically demanding proline derived catalyst, racemic α‐branched aldehydes are reacted with alkylating agents in a DYKAT process to give the corresponding α‐alkylated aldehydes with quaternary stereogenic centers in good yields and high enantioselectivities.  相似文献   

19.
The biomimic reactions of N‐phosphoryl amino acids, which involved intramolecular penta‐coordinate phosphoric‐carboxylic mixed anhydrides, are very important in the study of many biochemical processes. The reactivity difference between the α‐COOH group and β‐COOH in phosphoryl amino acids was studied by experiments and theoretical calculations. It was found that the α‐COOH group, and not β‐COOH, was involved in the ester exchange on phosphorus in experiment. From MNDO calculations, the energy of the penta‐coordinate phosphoric intermediate containing five‐member ring from α‐COOH was 35 kJ/mol lower than that of the six‐member one from β‐COOH. This result was in agreement with that predicted by HF/6‐31G** and B3LYP/6‐31G** calculations. Theoretical three‐dimensional potential energy surface for the intermediates predicted that the transition states 4 and 5 involving α‐COOH or β‐COOH group had energy barriers of ΔE=175.8 kJ?mol?1 and 210.4 kJ?mol?1, respectively. So the α‐COOH could be differentiated from β‐COOH intramolecularly in aspartic acids by N‐phosphorylation. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 41–51, 2001  相似文献   

20.
Based on the asymmetric copper‐catalyzed 1,2‐addition of Grignard reagents to ketones, (R,R,R)‐γ‐tocopherol has been synthesized in 36 % yield over 12 steps (longest linear sequence). The chiral center in the chroman ring was constructed with 73 % ee by the 1,2‐addition of a phytol‐derived Grignard reagent to an α‐bromo enone prepared from 2,3‐dimethylquinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号