首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work describes oxidation of ascorbic acid (AA) at octacyanomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Mo(CN) film modified glassy carbon electrode in 0.1 M H2SO4. The modified electrode has been successfully prepared by means of electrostatically trapping Mo(CN) mediator in the cationic film of glutaraldehyde‐cross‐linked poly‐L ‐lysine. The dependence of peak current of modified electrode in pure supporting indicates that the charge transfer in the film was a mixed process at low scan rates (5 to 200 mV s?1), and kinetically restrained at higher scan rates (200 to 1000 mV s?1). Cyclic voltammetry and rotating disk electrode (RDE) techniques are used to investigate the electrocatalytic oxidation of ascorbic acid and compared with its oxidation at bare and undoped PLL‐GA film coated electrodes. The rate constant of catalytic reaction k obtained from RDE analysis was found to be 9.5×105 cm3 mol?1 s?1. The analytical determination of ascorbic acid has been carried out using RDE technique over the physiological interest of ascorbic acid concentrations with a sensitivity of 75 μA mM?1. Amperometric estimation of AA in stirred solution shows a sensitivity of 15 μA mM?1 over the linear concentration range between 50 and 1200 μM. Interestingly, PLL‐GA‐Mo(CN) modified electrode facilitated the oxidation of ascorbic acid but not responded to other electroactive biomolecules such as dopamine, uric acid, NADH, glucose. This unique feature of PLL‐GA‐Mo(CN) modified electrode allowed for the development of a highly selective method for the determination of ascorbic acid in the presence of interferents.  相似文献   

2.
《Electroanalysis》2006,18(10):993-1000
A composite film modified electrode containing a Keggin‐type heteropolyanion, H3(PMo12O40)?H2O, was fabricated with 3‐aminopropyltrimethoxysilane (APMS) attached on an electrochemically activated glassy carbon (GC) electrode through the formation of C? O? Si bond. PMo12O was then complexed with APMS through the electrostatic interaction between the phosphate groups of PMo12O and amine groups of APMS (PMo12O ‐APMS). XPS and cyclic voltammetry were employed for characterization of the composite film. The PMo12O ‐APMS modified electrode showed three reversible redox pairs with smaller peak‐separation and was stable in the larger pH range compared with that in a solution phase. The catalytic properties of the modified electrode for the reduction of ClO , BrO , and IO were studied and the modified electrode exhibited good electrocatalytic activities for the three anions. The experimental parameters, such as pH, temperature, and the applied potential were optimized. The detection limits were determined to be 7.0±0.35 μM, 4.0±0.17 μM, and 0.1±0.04 μM for ClO , BrO , and IO , respectively. The modified electrode was applied to natural water samples for the detection of ClO , BrO , and IO .  相似文献   

3.
《Electroanalysis》2003,15(14):1165-1170
We describe the controlled fabrication of ultrathin multilayer films consisting of tri‐vanadium‐ substituted heteropolytungstate anions (denoted as P2W15V3) and a cationic polymer of quaternized poly (4‐vinylpyridine) partially complexed with osmium bis(2,2′‐bipyridine) (denoted as QPVP‐Os) on the 4‐aminobenzoic acid (4‐ABA) modified glassy carbon electrode (GCE) surface based on layer‐by‐layer assembly. Cyclic voltammetry and UV‐vis absorption spectrometry have been used to easily monitor the thickness and uniformity of thus‐formed multilayer films. The V‐centered redox reaction of P2W15V3 in the multilayer films can effectively catalyze the reduction of BrO and NO . The resulting P2W15V3/QPVP‐Os multilayer film modified electrode behaves as a much promising electrochemical sensor because of the low overpotential for the catalytic reduction of BrO and NO , and the catalytic oxidation of ascorbic acid.  相似文献   

4.
《Electroanalysis》2005,17(23):2170-2174
The kinetics on the current amplification of the disposable screen‐printed carbon electrodes (SPCEs) by modification with chitosan oligomers (COs), coupled with the Fe(CN) redox system, were characterized with the variation of electron‐transfer rate constant () and the electroactive area (Aea) at electrode surface. The nonlinear response characteristics of peak currents with increase in Fe(CN) bulk concentrations complicated the estimation of Aea in cyclic voltammetric analysis. Upon the modification with COs, the rate constant of SPCEs was not much influenced and the current amplification was characterized with the increase of a better estimated Aea, obtained from electrochemical impedance measurements and verified with the reciprocal of electron‐transfer resistances linearly proportional to the Fe(CN) bulk concentrations. It is hereby provided for an evaluation of the carbon based electrodes with modification.  相似文献   

5.
A well‐defined random copolymer of styrene (S) and chloromethylstyrene (CMS) featuring lateral chlorine moieties with an alkyne terminal group is prepared (P(S‐co‐CMS), = 5500 Da, PDI = 1.13). The chloromethyl groups are converted into Hamilton wedge (HW) entities (P(S‐co‐HWS), = 6200 Da, PDI = 1.13). The P(S‐co‐HWS) polymer is subsequently ligated with tetrakis(4‐azidophenyl)methane to give HW‐functional star‐shaped macromolecules (P(S‐co‐HWS))4, = 25 100 Da, PDI = 1.08). Supramolecular star‐shaped copolymers are then prepared via self‐assembly between the HW‐functionalized four‐arm star‐shaped macromolecules ( P(S‐co‐HW )) 4 and cyanuric acid (CA) end‐functionalized PS (PS–CA, = 3700 Da, PDI = 1.04), CA end‐functionalized poly(methyl methacrylate) (PMMA–CA, = 8500 Da, PDI = 1.13) and CA end‐functionalized polyethylene glycol (PEG–CA, = 1700 Da, PDI = 1.05). The self‐assembly is monitored by 1H NMR spectroscopy and light scattering analyses.  相似文献   

6.
Unmodified β‐cyclodextrin has been directly used to initiate ring‐opening polymerization of ϵ‐caprolactone in the presence of yttrium trisphenolate. Well‐defined cyclodextrin (CD)‐centered star‐shaped poly(ϵ‐caprolactone)s have been successfully synthesized containing definite average numbers of arms (Narm = 4–6) and narrow polydispersity indexes (below 1.10). The number‐average molecular weight ( ) and average molecular weight per arm ( ) are controlled by the feeding molar ratio of monomer to initiator. The prepared star‐PCL with of 2.7 × 103 is in fully amorphous and that with of 13.3 × 103 is crystallized. In addition, the obtained poly(e‐caprolactone) (PCL) stars with various molecular weights have different solubilities in methanol and tetrahydrofuran, which can be applied for further modifications.  相似文献   

7.
Methyl methacrylate/styrene (MMA/S), ethyl methacrylate/styrene (EMA/S) and butyl methacrylate/styrene (BMA/S) feeds (>90 mol % methacrylate) were copolymerized in 50 wt % p‐xylene at 90 °C with 10 mol % of additional SG1‐free nitroxide mediator relative to unimolecular initiator (BlocBuilder®) to yield methacrylate rich copolymers with polydispersities w/ n = 1.23–1.46. kpK values (kp = propagation rate constant, K = equilibrium constant) for MMA/S copolymerizations were comparable with previous literature, whereas EMA/S and BMA/S copolymerizations were characterized by slightly higher kpK's. Chain extensions with styrene at 110 °C initiated by the methacrylate‐rich macroinitiators (number average molecular weight n = 12.9–33.5 kg mol?1) resulted in slightly broader molecular weight distributions with w/ n = 1.24–1.86 and were often bimodal. Chain extensions with glycidyl methacrylate/styrene/methacrylate (GMA/S/XMA where XMA = MMA, EMA or BMA) mixtures at 90 °C using the same macroinitiators resulted frequently in bimodal molecular weight distributions with many inactive macroinitiators and higher w/ n = 2.01–2.48. P(XMA/S) macroinitiators ( n = 4.9–8.9 kg mol?1), polymerized to low conversion and purified to remove “dead” chains, initiated chain extensions with GMA/MMA/S and GMA/EMA/S giving products with w/ n ~ 1.5 and much fewer unreacted macroinitiators (<5%), whereas the GMA/BMA/S chain extension was characterized by slightly more unreacted macroinitiators (~20%). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2574–2588, 2009  相似文献   

8.
The most common approximation of electroneutrality is inappropriate for analyzing the voltammetric response of nanoelectrodes. Therefore, the microelectrode theory for extracting the standard rate constant k0 for electron transfer from steady‐state voltammograms is invalid for nanoelectrodes. Unlike previous approaches, we considered the influence of the interfacial potential distribution caused by the absence of electroneutrality. We estimated the magnitude of the error at low overpotential incurred as a result of ignoring the absence of electroneutrality and found that it was small. In this region, electrochemical reaction appears to be limited by the rate of electron transfer. Under these conditions, k0 can be obtained from steady‐state voltammogram data in a low overpotential region according to an approximate form of the Butler–Volmer equation. This procedure can greatly simplify analysis and calculation of the rate constant k0 at nanoelectrodes. Steady‐state voltammogram of equal‐concentration hexacyanoferrate(III)/(II) (Fe(CN) /Fe(CN) ) and ferrocenylmethyltrimethylammonium(III)/(II) (FcTMA2+/FcTMA+) redox couples were investigated at Pt? Ir nanoelectrodes in the presence of a support electrolyte. k0 for Fe(CN) /Fe(CN) and FcTMA2+/FcTMA+ at Pt? Ir nanoelectrodes were evaluated.  相似文献   

9.
The electrochemical oxidation of bromide in the presence of ammonium ion (NH ) was studied by cyclic voltammetry and UV‐vis spectroscopy. The experimental results suggested that the anodically generated bromine (Br2) would be hydrolyzed to hypobromous acid (HBrO) at the pH range of 5–7 and was further disproportionate to hypobromite anion (BrO?) when pH was larger than 7. Both HBrO and BrO? were confirmed to be participated in the following homogeneous chemical reaction with the coexisted ammonium ion. However, HBrO is electroactive whereas BrO is electroinactive at carbon electrode. Based upon the reaction of HBrO with NH , an indirect electrochemical method was proposed for determination of NH with dual‐electrode configuration in phosphate buffer solution (pH 7), where HBrO was produced at a generator electrode and the excess HBrO was subsequently detected at a collector electrode after a reaction with NH in a batch solution or in a micro flow injection analytical (micro‐FIA) system by using an interdigitated array (IDA) Pt microelectrode and a carbon film ring‐disk electrode (CFRDE), respectively. The decreasing of reduction current at the collector electrode was proportional to the concentration NH in both systems, with the detection limit below 3.0 μM. This approach shows the advantage of highly selectivity even in presence of a large amount of coexisted cations, and was successfully applied for the determination of NH in environmental water samples.  相似文献   

10.
The lamellar coordination polymer [(CuSCN)2(μ‐1,10DT18C6)] (1,10DT18C6 = 1,10‐dithia‐18‐crown‐6), in which staircase‐like CuSCN double chains are bridged by thiacrown ether ligands, may be prepared in two triclinic modifications 1 a and 1 b by reaction of CuSCN with 1,10DT18C6 in respectively benzonitrile or water. Performing the reaction in acetonitrile in the presence of an equimolar quantity of KSCN leads, in contrast, to formation of the K+ ligating 2‐dimensional thiocyanatocuprate(I) net [{Cu2(SCN)3}] of 2 , half of whose Cu(I) atoms are connected by 1,10DT18C6 macrocycles. The potassium cations in [{K(CH3CN)}{Cu2(SCN)3(μ‐1,10DT18C6)}] ( 2 ) are coordinated by all six potential donor atoms of a single thiacrown ether in addition to a thiocyanate S and an acetonitrile N atom. Under similar conditions, reaction of CuI, NaSCN and 1,10DT18C6 affords [{Na(CH3CN)2}{Cu4I4(SCN)(μ‐1,10DT18C6)}] ( 3 ), which contains distorted Cu4I4 cubes as characteristic molecular building units. These are bridged by thiocyanate and thiacrown ether ligands into corrugated Na+ ligating sheets. In the presence of divalent Ba2+ cations, charge compensation requirements lead to formation of discrete [Cu(SCN)3(1,10DT18C6‐κS)]2– anions in [Ba{Cu(SCN)3(1,10DT18C6‐κS)}] ( 4 ).  相似文献   

11.
Summary: A computer simulation model is proposed to study film growth and surface roughness in aqueous (A) solution of hydrophobic (H) and hydrophilic (P) groups on a simple three dimensional lattice of size with an adsorbing substrate. Each group is represented by a particle with appropriate characteristics occupying a unit cube (i.e., eight sites). The Metropolis algorithm is used to move each particle stochastically. The aqueous constituents are allowed to evaporate while the concentration of H and P is constant. Reactions proceed from the substrate and bonded particles can hop within a fluctuating bond length. The film thickness ( ) and its interface width ( ) are examined for hardcore and interacting particles for a range of temperature ( ). Simulation data show a rapid increase in and followed by its non‐monotonic growth and decay before reaching steady‐state and near equilibrium ( ) in asymptotic time step limit. The growth can be described by power laws, e.g., with a typical value of in initial time regime followed by at . For hardcore system, the equilibrium film thickness ( ) and surface roughness ( ) seem to scale linearly with the temperature, i.e., at low and at higher . For interacting functional groups in contrast, the long time (unsaturated) film thickness and surface roughness, and decay rapidly followed by a slow increase on raising the temperature.

Growth of the average film thickness at a temperature .  相似文献   


12.
Macrocyclic and polymeric imines 5,5′ and 6,6′ are obtained in excellent yields by template‐free polycondensation of 1,6‐bis(4‐formylbenzoyloxy)hexane (1) with commercially available 4,4′‐methylene‐bis(cyclohexylamine) (2) and with bis(2‐amino‐2‐methylprop‐1‐yl)adipate dihydrochloride (4), respectively. The degree of macrocyclization during imine synthesis strongly depends on the diamine. Matrix‐assisted laser desorption–ionization time‐of‐flight (MALDI‐TOF) mass spectrometry analysis and gel permeation chromatography (GPC) measurements show that (2) leads to more macrocyclic adducts than (4). The subsequent meta‐chloroperoxybenzoic acid oxidation of polyimines 5,5′ and 6,6′ ( = 1650–11 200 g mol−1, = 3800–27 350 g mol−1) yields the corresponding polyoxaziridines 7,7′ and 8,8′ consisting of macrocyclic and linear polymeric structures ( = 1750–8050 g mol−1, = 3250–15 800 g mol−1). The synthesized polyoxaziridines are relatively stable and storable at room temperature.  相似文献   

13.
An effective electrochemiluminescence (ECL) sensor was developed by combining Ru(bpy) with multiwalled carbon nanotubes(MWNTs) doped polyvinyl butyral (PVB) film. The doped film can prevent the leakage of Ru(bpy) efficiently and the immobilized Ru(bpy) kept its electrocatalytic activity toward the electrooxidation of tripropylamine (TPA), suggesting PVB and MWNTs were proper matrix to immobilize Ru(bpy) by hydrophobic interaction. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and electrochemiluminescent characterization were employed to study the presented sensor. A wide linear dynamic range of 6 orders of magnitude between ECL intensity and concentration of TPA was found from 1×10?8 M to 5×10?2 M, with a detection limit of 3.5×10?9 M.  相似文献   

14.
Electrochemical polymerization of acriflavine (AF) was carried out onto glassy carbon electrodes (GCE) from the aqueous buffer solution containing 1.5×10?3 M AF monomer (pH 3.5) which produced a thin electrochemically active film. This is noted as poly(AF) film modified electrodes (PAF/GCE). This modified electrode was shown a stable reversible redox couple centered at +0.22 V in pH 3.5 buffer solutions. PAF/GCE was found to be more stable in acidic solutions and its formal potential was found to be pH dependent with a slope close to ?60 mV/pH. The electrochemical deposition kinetics of poly(AF) onto gold coated quartz crystal was studied by using electrochemical quartz crystal microbalance (EQCM) combined with cyclic voltammetry (CV). PAF/GCE was found be good mediator for electrochemical oxidation of reduced nicotinamide adenine dinucleotide (NADH) in pH 5 buffer solutions. The electrocatalytic oxidation of SO and electrocatalytic reduction of NO , SO and S2O were carried out at PAF/GCE electrode in acidic aqueous solutions. The electrocatalytic oxidation of NADH was also investigated by using amperometric method.  相似文献   

15.
《Electroanalysis》2006,18(18):1838-1841
The immobilization of tris(2,2'‐bipyridyl)ruthenium(II) [Ru(bpy) ] in a TiO2/Nafion nanocomposites membrane modified glassy carbon electrode (GCE) was achieved via both an ion‐exchange process and hydrophobic interactions .The surface‐confined Ru(bpy) shows good electrochemical and photochemical activities. The Ru(bpy) underwent reversible surface process and reacted with chlorphenamine maleate (CPM) to produce electrochemiluminescence. The modified electrode was used for the ECL determination of CPM. It showed good linearity in the concentration range from 2×10?8 g/mL to 1×10?6 g/mL (R=0.9995) with a detection 6×10?9 g/mL (S/N=3). The relative standard derivation (n=11) was 2%. This method is developed for the determination of CPM with simplicity and high sensitivity.  相似文献   

16.
Protection of acetylenic monomers is a common practice to avoid parasitic side reactions during polymerization. Herein, we report that redox‐initiated RAFT polymerization allows the direct, room temperature synthesis of a variety of single‐chain nanoparticle precursors (displaying narrow molecular weight dispersity, / = 1.12 –1.37 up to = 100 kDa) containing well‐defined amounts of naked, unprotected acetylenic functional groups available for rapid and quantitative intrachain cross‐linking via metal‐catalyzed carbon–carbon coupling (i.e., C–C “click” chemistry). To illustrate the useful “self‐clickable” character of the new unprotected acetylenic precursors, single‐chain nanoparticles have been prepared for the first time in a facile and highly efficient manner by copper‐catalyzed alkyne homocoupling (i.e., Glaser–Hay coupling) at room temperature under normal air atmosphere.  相似文献   

17.
The effect of a layer of electrochemically grafted 4‐diazo‐N,N‐diethylaniline (DEA) groups on the electron transfer kinetics of redox systems, displaying fast and slow heterogeneous electron transfer rate constants at edge and basal planes of carbon, was investigated. The properties of the modified electrode were characterized by cyclic voltammetry using four different inorganic redox systems (Fe(CN) , Co(phen) , Ru(NH3) , and IrCl in acidic, neutral, and basic media. Two distinct blocking behaviors and electrostatic effects were observed. More precisely, a strong blocking effect of the grafted layer on Fe(CN) and Co(phen) was found, whereas Ru(NH3) and IrCl showed to be rather unaffected by the presence of the DEA grafted layer.  相似文献   

18.
Macroporous crosslinked poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) (PGME) was synthesized by suspension copolymerization and modified by ring‐opening reaction of the pendant epoxy groups with ethylene diamine (EDA). Inverse gas chromatography (IGC) at infinite dilution was applied to determine the thermodynamic interactions of PGME and modified copolymer, PGME‐en. The specific surface areas of the initial and modified copolymer samples were determined by the BET method, from low‐temperature nitrogen adsorption isotherms. The specific retention volumes, V, of 10 organic compounds of different chemical nature and polarity (nonpolar, donor, or acceptor) were determined in the temperature range 333–413 K. The weight fraction activity coefficients of test sorbates, , and Flory–Huggins interaction parameters, , were calculated and discussed in terms of interactions of sorbates with PGME and PGME‐en. Also, the partial molar free energy, , partial molar heat of mixing, , sorption molar free energy, ΔG, sorption enthalpy ΔH, and sorption entropy, ΔS, were calculated. Glass transitions in PGME and PGME‐en, determined from IGC data, were observed in the temperature range 373–393 K and 363–373 K, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2524–2533, 2005  相似文献   

19.
The dilution of tert‐butylamine (tBA) with water and subsequent cooling leads to a large series of different crystalline hydrates by an in situ IR laser melting‐zone procedure. The crystal structures were determined for tBA?n H2O, with n=0, , 1, 7 , 7 , 9 , 11, and 17. For the two lower hydrates (n= , 1), one‐ and two‐dimensional hydrogen‐bonded networks are formed, respectively. The higher hydrates (n>1) exhibit a clathrate‐like three‐dimensional water framework with the tBA molecules as part of, or sitting inside, the cages. In all cases, tBA is hydrogen‐bonded to the H2O framework. In the intermediate range (1相似文献   

20.
A ternary blend of the bisiminopyridine chromium (III) (Cr‐ 1 ) with the bisiminopyridine iron (II) (Fe‐ 2 ) post‐metallocenes with the quinolylsilylcyclopentadienyl chromium (III) halfsandwich complex (Cr‐ 3 ) was supported on mesoporous silica to produce novel multiple single‐site catalysts and polyethylene reactor blends with tailor‐made molecular weight distributions (MWDs). The preferred cosupporting sequence of this ternary blend on MAO‐treated silica was Fe‐ 2 followed by Cr‐ 1 and Cr‐ 3 . Cosupporting does not impair the single‐site nature of the blend components producing polyethylene fractions with = 104 g · mol−1 on Cr‐ 1 , = 3 × 105 g · mol−1 on Fe‐ 2 , and = 3 × 106 g · mol−1 on Cr‐ 3 . As a function of the Fe‐ 2 /Cr‐ 1 /Cr‐ 2 mixing ratio it is possible to control the weight ratio of these three polyethylenes without affecting the individual average molecular weights and narrow polydispersities of the three polyethylene fractions. Tailor‐made polyethylene reactor blends with ultra‐broad MWD and polydispersities varying between 10 and 420 were obtained. When the molar ratio of Fe‐ 2 /Cr‐ 1 was constant, the ultra‐high molecular polyethylene (UHMWPE, > 106 g · mol−1) content was varied between 8 and 16 wt.‐% as a function of the Cr‐ 3 content without impairing the blend ratio of the other two polyethylene fractions and without sacrificing melt processability. When the molar ratio Fe‐ 2 /Cr‐ 3 was constant, it was possible to selectively increase the content of the low molecular weight fraction by additional cosupporting of Cr‐ 1 . Due to the intimate mixing of low and ultra‐high molecular weight polyethylenes (UHMPEs) produced on cosupported single‐site catalysts a wide range of melt processable polyethylene reactor blends was obtained.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号