共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Srećko I. Kirin Thomas Weyhermüller Klaus Merz Nils Metzler‐Nolte Prof. Dr. 《无机化学与普通化学杂志》2007,633(15):2706-2710
This work reports structural investigations on two metal complexes of the functionalized (p‐carboxylatobenzyl)‐bis(2‐picolyl)amine ligand 1 (HL). The complex {[HLPdCl]Cl × H2O}2 ( 2Pd ) has a square‐planar coordination around the Pd ion. It forms discrete dimers by intermolecular hydrogen bonding involving the protonated ligand HL. The coordination around the Zn2+ ion in {[(H2O)LZn]CF3SO3 × 2 H2O}∞ ( 3Zn ) is best described as distorted trigonal‐bipyramidal. The N3O2 ligand sphere is composed of three nitrogen atoms from the bpa ligand, one water molecule, and a carboxylate oxygen atom from a neighbouring molecule, thus forming infinite chains along the crystallographic a axis. Further intermolecular interactions are based on the same (H2O)2(anion)2 motif as for 2Pd , but whereas the former forms discrete dimers, 3Zn forms a more complicated two‐dimensional coordination polymer with additional intermolecular hydrogen bonds. 相似文献
4.
5.
Copper(II)‐Mediated Transformation of a Tridentate Non‐Innocent Ligand into a Tetradentate Salen‐Type Innocent Ligand 下载免费PDF全文
A non‐innocent ligand, H4L, was synthesized by introducing a ? CH2NH2 group at the ortho carbon atom to the aniline moiety of 2‐anilino‐4,6‐di‐tert‐butylphenol. The new ligand was characterized by IR and NMR spectroscopy and mass spectrometry techniques. Upon treatment with CuCl2 ? 2 H2O, this non‐innocent ligand provided a mononuclear four‐coordinate salen‐type CuII complex by complete modification of the ligand backbone. The complex was characterized by IR spectroscopy, mass spectrometry, X‐ray single‐crystal diffraction, electron paramagnetic resonance (EPR) spectroscopy, and UV/Vis/near‐IR spectroscopy techniques. X‐ray crystallographic analysis showed an asymmetric environment around the CuII center with a small (≈12°) twist between the two biting planes. Analysis of the X‐band EPR spectrum also supported the asymmetric environment and also indicated the presence of an unpaired electron on the d orbital. The UV/Vis/near‐IR spectrum showed strong absorption bands for metal‐to‐ligand charge transfer and ligand‐to‐metal charge transfer along with a CuII‐centered d–d transition. Mechanistic investigation of the formation of complex 1 indicated that modification of the ligand backbone proceeded through ligand‐centered amine to imine oxidation as well as through C? N bond‐breaking processes. During these processes, 3,5‐di‐tert‐butyl‐1,2‐benzoquinone and 2‐aminobenzylidene were produced. Ammonia, generated in situ through hydrolysis of the imine to the aldehyde, reacted with 3,5‐di‐tert‐butyl‐1,2‐benzoquinone to form the corresponding 3,5‐di‐tert‐butyl‐1,2‐iminobenzoquinone moiety, which upon two‐electron reduction in the reaction medium formed 3,5‐di‐tert‐butyl‐1,2‐aminophenol. This aminophenol underwent condensation with the H2L5 ligand that was formed by self‐condensation of two molecules of 2‐aminobenzaldehyde and provided the modified ligand backbone. 相似文献
6.
Vincenzo Mirabello Maria Caporali Luca Gonsalvi Gabriele Manca Andrea Ienco Maurizio Peruzzini 《化学:亚洲杂志》2013,8(12):3177-3184
The selective functionalization of the polyphosphorus moiety Ph2PCH2PPh2PPPP present as a tetrahapto‐ligand in complex [Ir(dppm)(Ph2PCH2PPh2PPPP)]+ ( 1 , dppm=Ph2PCH2PPh2) was obtained by reaction of 1 with water under basic conditions at room temperature. The formation of the new triphosphaallyl moiety η3‐P3{P(O)H} was determined in solution by NMR spectroscopy, and confirmed in the solid state by a single‐crystal X‐ray structure of the stable product [Ir(κ2‐dppm)(κ1‐dppm)(η3‐P3{P(O)H})] ( 2 ). In solution, 2 has a fluxional behavior attributable to the four P atoms belonging to the tetraphosphorus moiety in 1 and exhibits a chemical exchange process involving the two PPh2 moieties of the same bidentate ligand, as determined by 1D and 2D NMR spectroscopy experiments carried out at variable temperature. The mechanism of the reaction was investigated at the DFT level, which suggested a selective attack of an in‐situ generated OH? anion on one of the non‐coordinated phosphorus atoms of the P4 moiety. The reaction then evolves through an acid‐assisted tautomerization, which leads to the final compound 2 . Bonding analysis pointed out that the new unsubstituted P3‐unit in the η3‐P3{P(O)H} moiety behaves as a triphosphallyl ligand. 相似文献
7.
Solid‐State Thermolysis of a fac‐Rhenium(I) Carbonyl Complex with a Redox Non‐Innocent Pincer Ligand
Dr. Titel Jurca Dr. Wen‐Ching Chen Sheila Michel Dr. Ilia Korobkov Dr. Tiow‐Gan Ong Dr. Darrin S. Richeson 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(13):4278-4286
The development of rhenium(I) chemistry has been restricted by the limited structural and electronic variability of the common pseudo‐octahedral products fac‐[ReX(CO)3L2] (L2=α‐diimine). We address this constraint by first preparing the bidentate bis(imino)pyridine complexes [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)3X] (X=Cl 2 , Br 3 ), which were characterized by spectroscopic and X‐ray crystallographic means, and then converting these species into tridentate pincer ligand compounds, [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)2X] (X=Cl 4 , Br 5 ). This transformation was performed in the solid‐state by controlled heating of 2 or 3 above 200 °C in a tube furnace under a flow of nitrogen gas, giving excellent yields (≥95 %). Compounds 4 and 5 define a new coordination environment for rhenium(I) carbonyl chemistry where the metal center is supported by a planar, tridentate pincer‐coordinated bis(imino)pyridine ligand. The basic photophysical features of these compounds show significant elaboration in both number and intensity of the d–π* transitions observed in the UV/Vis spec tra relative to the bidentate starting materials, and these spectra were analyzed using time‐dependent DFT computations. The redox nature of the bis(imino)pyridine ligand in compounds 2 and 4 was examined by electrochemical analysis, which showed two ligand reduction events and demonstrated that the ligand reduction shifts to a more positive potential when going from bidentate 2 to tridentate 4 (+160 mV for the first reduction step and +90 mV for the second). These observations indicate an increase in electrostatic stabilization of the reduced ligand in the tridentate conformation. Elaboration on this synthetic methodology documented its generality through the preparation of the pseudo‐octahedral rhenium(I) triflate complex [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)2OTf] ( 7 , 93 % yield). 相似文献
8.
Amit Das Dipl.‐Chem. Thomas Michael Scherer Prasenjit Mondal Dr. Shaikh M. Mobin Prof. Dr. Wolfgang Kaim Prof. Dr. Goutam Kumar Lahiri 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(45):14434-14443
New compounds [Ru(pap)2(L)](ClO4), [Ru(pap)(L)2], and [Ru(acac)2(L)] (pap=2‐phenylazopyridine, L?=9‐oxidophenalenone, acac?=2,4‐pentanedionate) have been prepared and studied regarding their electron‐transfer behavior, both experimentally and by using DFT calculations. [Ru(pap)2(L)](ClO4) and [Ru(acac)2(L)] were characterized by crystal‐structure analysis. Spectroelectrochemistry (EPR, UV/Vis/NIR), in conjunction with cyclic voltammetry, showed a wide range of about 2 V for the potential of the RuIII/II couple, which was in agreement with the very different characteristics of the strongly π‐accepting pap ligand and the σ‐donating acac? ligand. At the rather high potential of +1.35 V versus SCE, the oxidation of L? into L. could be deduced from the near‐IR absorption of [RuIII(pap)(L.)(L?)]2+. Other intense long‐wavelength transitions, including LMCT (L?→RuIII) and LL/CT (pap.?→L?) processes, were confirmed by TD‐DFT results. DFT calculations and EPR data for the paramagnetic intermediates allowed us to assess the spin densities, which revealed two cases with considerable contributions from L‐radical‐involving forms, that is, [RuIII(pap0)2(L?)]2+?[RuII(pap0)2(L.)]2+ and [RuIII(pap0)(L?)2]+?[RuII(pap0)(L?)(L?)]+. Calculations of electrogenerated complex [RuII(pap.?)(pap0)(L?)] displayed considerable negative spin density (?0.188) at the bridging metal. 相似文献
9.
Li‐Li Xu Jian‐Guang Cheng Prof. Dr. Ke‐Fen Yue Yong‐Liang Liu Cheng‐Jun Wang Dr. Yao‐Yu Wang 《无机化学与普通化学杂志》2012,638(2):366-371
Two coordination polymers based on 1, 6‐bis(2‐methyl‐imidazole‐1‐yl)‐hexane (bimh), namely {[Zn3(BTC)2(bimh)] · (bimh)}n ( 1 ) and {[Zn(IPA)(bimh)] · (CH3CH2OH)0.5}n ( 2 ) (H3BTC = trimesic acid, H2IPA = isophthalic acid), were synthesized through hydrothermal reactions. In compound 1 , the zinc(II) ions are bridged by BTC3– ligands to form an undulating infinite two‐dimensional (2D) polymeric network. The 3D networks of 1 show a twofold interpenetrating net. In compound 2 , zinc(II) ions are bridged by IPA2– ligands to form one‐dimensional (1D) helical structures. The 2D structures of 2 are further assembled into 3D networks through aromatic π–π stacking interactions. Both compounds exhibit strong photoluminescence at room temperature and may be good candidates for potential luminescence materials. 相似文献
10.
Synthesis,Crystal Structure,and Electrochemistry of Iron and Cobalt Complexes Supported by a Pentadentate Amine‐bis(phenolate) Ligand 下载免费PDF全文
The pentadentate amine‐bis(phenolate) ligand 6,6′‐(dipyridin‐2‐ylmethylazanediyl)bis(methylene)bis(2,4‐dimethylphenol) (H2L) was prepared and characterized. This ligand readily coordinates with FeIII or CoIII ions, and the resulting complexes [FeIIILCl] ( 1 ) and [CoIIIL(H2O)]Cl ( 2 ) were characterized by elemental analysis. X‐ray structural studies show that the ligand in complexes 1 and 2 acts as a pentadentate ligand, leaving one coordination side of the transition metal available for exogenous ligands such as chloride ion ( 1 ) or water ( 2 ) ligand, and the central metal atoms are hexacoordinate in a similar distorted octahedral arrangement. Electrochemical studies reveal that each of the complexes exhibits multiple redox processes in the potential window investigated. Complex 1 shows one reversible oxidative event at 0.32 V and one quasi‐reversible reduction event at –1.03 V, while the complex 2 displays one reversible oxidative event at 0.18 V and one quasi‐reversible reduction at –0.64 V. 相似文献
11.
Torsten Ampßler Georg Monsch Jens Popp Tobias Riggenmann Pedro Salvador Daniel Schrder Peter Klüfers 《Angewandte Chemie (International ed. in English)》2020,59(30):12381-12386
Nitrosyl–metal bonding relies on the two interactions between the pair of N–O‐π* and two of the metal's d orbitals. These (back)bonds are largely covalent, which makes their allocation in the course of an oxidation‐state determination ambiguous. However, apart from M‐N‐O‐angle or net‐charge considerations, IUPAC′s “ionic approximation” is a useful tool to reliably classify nitrosyl metal complexes in an orbital‐centered approach. 相似文献
12.
13.
A novel PdCl2/bis(2‐pyridylmethyl)amine‐based ligand ( 1 ) catalytic system, which is water‐soluble and air‐stable, has been successfully synthesized and applied for Suzuki‐Miyaura cross‐coupling reaction. In the presence of catalytic amount of PdCl2/ 1 system, arylboronic acids can couple with a wide range of aryl halides, including aryl bromides and aryl chlorides. The reactions proceed under mild conditions to give excellent yields, and a wide range of functionalities is tolerated. 相似文献
14.
《应用有机金属化学》2017,31(9)
Monomeric bis(isopropoxy) titanium complexes LTi(Oi Pr)2 (L = ─ OC6H2–4‐R1–6‐R2–2‐CH2N[(CH2)2N(R3)2]CH2–4‐R4–6‐R5‐C6H2O ─ , R1 = R2 = t Bu, R3 = Et, R4 = R5 = Cl, (L1)Ti(Oi Pr)2; R1 = R2 = Me, R3 = Et, R4 = R5 = Me, (L2)Ti(Oi Pr)2; R1 = R2 = t Bu, R3 = Et, R4 = OMe, R5 = t Bu, (L3)Ti(Oi Pr)2; R1 = R4 = OMe, R3 = Et, R2 = R5 = t Bu, (L4)Ti(Oi Pr)2; R1 = R2 = t Bu, R3 = Me, R4 = OMe, R5 = t Bu, (L5)Ti(Oi Pr)2) supported by amine bis(phenolate) ligands were synthesized and characterized using NMR spectroscopy and elemental analysis. The solid‐state structure of (L3)Ti(Oi Pr)2 was determined using single‐crystal X‐ray diffraction. (L1–5)Ti(Oi Pr)2 were all found to initiate the ring‐opening polymerization of l ‐lactide and rac ‐lactide in a controlled manner at 110–160°C. As shown by kinetic studies, (L1)Ti(Oi Pr)2 polymerized l ‐lactide faster than did (L2–5)Ti(Oi Pr)2. In addition, good number‐average molecular weight and narrow polydispersity index (1.00–1.71) of polymers were also obtained. The microstructure of the polymers and a possible mechanism of coordination–insertion of polymerization were evidenced by MALDI‐TOF and 1H NMR spectra of the polylactides. 相似文献
15.
Adam J. Pearce Alyssa A. Cassabaum Grace E. Gast Prof. Dr. Renee R. Frontiera Prof. Dr. Ian A. Tonks 《Angewandte Chemie (International ed. in English)》2016,55(42):13169-13173
The synthesis of the first terminal Group 9 hydrazido(2‐) complex, Cp*IrN(TMP) ( 6 ) (TMP=2,2,6,6‐tetramethylpiperidine) is reported. Electronic structure and X‐ray diffraction analysis indicate that this complex contains an Ir?N triple bond, similar to Bergman's seminal Cp*Ir(NtBu) imido complex. However, in sharp contrast to Bergman's imido, 6 displays remarkable redox non‐innocent reactivity owing to the presence of the Nβ lone pair. Treatment of 6 with MeI results in electron transfer from Nβ to Ir prior to oxidative addition of MeI to the iridium center. This behavior opens the possibility of carrying out facile oxidative reactions at a formally IrIII metal center through a hydrazido(2?)/isodiazene valence tautomerization. 相似文献
16.
A new Zn(II) mononuclear complex with tris(benzimidazol‐2‐yl‐methyl)amine (NTB) was synthesized with stoichiometry of [Zn(NTB)NO3]NO3 · DIPY · DMF (DIPY : 4,4′‐dipyridyl). The complex was characterized by elemental analysis, UV and IR spectra. The crystal structure was determined by using X‐ray diffraction analysis. The crystal structure indicates that four N atoms and one O atom coordinate to zinc ion to construct a distorted trigonal‐dipyramid configuration. Three nonprotonated N atoms from imidazole groups are in the equatorial plane, one alkylamino N atom and one O atom from NO3?‐ in the axial directions. The biological activity assay shows that this complex presents certain biological activity by means of pyrogallol autoxidation and it can be called a model compound of superoxide dismutase (SOD). 相似文献
17.
1 INTRODUCTION The coordination chemistry of the nitrogen-contai- ning diphosphine ligand bis(diphenylphosphino)ami- ne (Ph2PNHPPh2) has recently received much atten- tion because the P atoms can bridge metal centers in μ-bonding mode to form bi- or polynuclear complex- es[1~10]. It has been shown that the acidity of N–H proton would promote functionalization on the ligand backbone[4, 5, 11]. Although a few complexes contain- ing deprotonated tridentate Ph2PNPPh2 have been synthesi… 相似文献
18.
R. Riva J. Rieger R. Jrme PH. Lecomte 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):6015-6024
This paper aims at reporting on the synthesis of a heterograft copolymer by combining the “grafting onto” process based on atom transfer radical addition (ATRA) and the “grafting from” process by atom transfer radical polymerization (ATRP). The statistical copolymerization of ε‐caprolactone (εCL) and α‐chloro‐ε‐caprolactone (αClεCL) was initiated by 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP), followed by ATRA of parts of the chlorinated units of poly(αClεCL‐co‐εCL) on the terminal double bond of α‐MeO,ω‐CH2?CH? CH2? CO2‐poly(ethylene oxide) (PEO). The amphiphilic poly(εCL‐g‐EO) graft copolymer collected at this stage forms micelles as supported by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The unreacted pendant chloro groups of poly(εCL‐g‐EO) were used to initiate the ATRP of styrene with formation of copolymer with two populations of randomly distributed grafts, that is PEO and polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6015–6024, 2006 相似文献
19.
Prof. Louise A. Berben 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(7):2734-2742
Non‐Innocent ligand complexes of aluminum are described in this Concept article, beginning with a discussion of their synthesis, and then structural and electronic characterization. The main focus concerns the ability of the ligands in these complexes to mediate proton transfer reactions. As examples, aluminum–ligand cooperation in the activation of polar bonds is described, as is the importance of hydrogen bonding to stabilization of a transition state for β‐hydride abstraction. Taken together these reactions enable catalytic processes such as the dehydrogenation of formic acid. 相似文献
20.
Benoît Lessard Milan Marić 《Journal of polymer science. Part A, Polymer chemistry》2011,49(24):5270-5283
A series of poly(2‐(dimethylamino)ethyl methacrylate‐ran‐9‐(4‐vinylbenzyl)‐9H‐carbazole) (poly(DMAEMA‐ran‐VBK)) random copolymers, with VBK molar feed compositions fVBK,0 = 0.02–0.09, were synthesized using 10 mol % [tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino] nitroxide (SG1) relative to 2‐([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino]oxy)‐2‐methylpropionic acid (BlocBuilder) at 80 °C and 90 °C. Controlled polymerizations were observed, even with fVBK,0 = 0.02, as reflected by a linear increase in number average molecular weight (Mn) versus conversion X ≤ 0.6 with final copolymers characterized by relatively narrow, monomodal molecular weight distributions (Mw/Mn ≈ 1.5). Poly(DMAEMA‐ran‐VBK) copolymers were deemed sufficiently pseudo‐“living” to reinitiate a second batch of N,N‐dimethylacrylamide (DMAA), with very few apparent dead chains, as indicated by the monomodal shift in the gel permeation chromatography chromatograms. Poly(DMAEMA‐ran‐VBK) random copolymers exhibited tuneable lower critical solution temperature (LCST), in aqueous solution, by modifying copolymer composition, solution pH and by the addition of the water‐soluble poly(DMAA) segment. 1H NMR analysis determined that, in water, the VBK units of the poly(DMAEMA‐ran‐VBK) random copolymer were segregated to the interior of the copolymer aggregate regardless of solution temperature and that poly(DMAEMA‐ran‐VBK)‐b‐poly(DMAA) block copolymers formed micelles above the LCST. In addition, the final random copolymer and block copolymer exhibited temperature dependent fluorescence due to the VBK units. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献