首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Designing an electrochemical sensor for versatile clinical applications is a sophisticated task and how dedicatedly functionalized composite materials can perform on this stage is a challenge for today and tomorrow's Nanoscience and Nanotechnology. In the present work, we demonstrate a new strategy for the development of novel electrochemical sensor based on catalytic nanocomposite film. Fullerene-C60 and multi-walled carbon nanotubes (MWCNTs) were dropped on the pre-treated carbon paste electrode (CPE) and copper nanoparticles (CuNPs) electrochemically deposited on the modified CPE to form nanocomposite film of CuNPs/C60/MWCNTs/CPE. In this work, an electrochemical method based on square wave voltammetry (SWV) employing CuNPs/C60/MWCNTs/CPE has been presented for the recognition and determination of paracetamol (PT). Developed electrochemical sensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronocoulometry. The composite film made the fabricated sensor to display high sensitivity and good selectivity for PT detection. The influence of the optimization parameters such as pH, accumulation time, deposition potential, scan rate and effect of loading of composite mixture of C60-MWCNTs and CuNPs on the electrochemical performance of the sensor were evaluated. A linear range from 4.0 × 10−9 to 4.0 × 10−7 M for PT detection was obtained with a detection limit of 7.3 × 10−11 M. The fabricated sensor was successfully applied to the detection of PT in biological samples with good recovery ranging from 99.21 to 103%.  相似文献   

2.
A simple and sensitive method for simultaneously measuring dopamine (DA), ascorbic acid (AA), and uric acid (UA) using a poly(1‐aminoanthracene) and carbon nanotubes nanocomposite electrode is presented. The experimental parameters for composite film synthesis as well as the variables related to simultaneous determination of DA, AA, and UA were optimized at the same time using fractional factorial and Doehlert designs. The use of carbon nanotubes and poly(1‐aminoanthracene) in association with a cathodic pretreatment led to three well‐defined oxidation peaks at potentials around ?0.039, 0.180 and 0.351 V (vs. Ag/AgCl) for AA, DA, and UA, respectively. Using differential pulse voltammetry, calibration curves for AA, DA, and UA were obtained over the range of 0.16–3.12×10?3 mol L?1, 3.54–136×10?6 mol L?1, and 0.76–2.92×10?3 mol L?1, with detection limits of 3.95×10?5 mol L?1, 2.90×10?7 mol L?1, and 4.22×10?5 mol L?1, respectively. The proposed method was successfully applied to determine DA, AA, and UA in biological samples with good results.  相似文献   

3.
《Electroanalysis》2005,17(24):2217-2223
Glassy carbon electrode modified by microcrystals of fullerene‐C60 mediates the voltammetric determination of uric acid (UA) in the presence of ascorbic acid (AA). Interference of AA was overcome owing to the ability of pretreated fullerene‐C60‐modified glassy carbon electrode. Based on its strong catalytic function towards the oxidation of UA and AA, the overlapping voltammetric response of uric acid and ascorbic acid is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents under conditions of both linear sweep voltammetry (LSV) and Osteryoung square‐wave voltammetry (OSWV). At pH 7.2, a linear calibration graph is obtained for UA in linear sweep voltammetry over the range from 0.5 μM to 700 μM with a correlation coefficient of 0.9904 and a sensitivity of 0.0215 μA μM?1 . The detection limit (3σ) is 0.2 μM for standard solution. AA in less than four fold excess does not interfere. The sensitivity and detection limit in OSWV were found as 0.0255 μA μM?1 and 0.12 μM, for standard solution respectively. The presence of physiologically common interferents (i.e. adenine, hypoxanthine and xanthine) negligibly affects the response of UA. The fullerene‐C60‐modified electrode exhibited a stable, selective and sensitive response to uric acid in the presence of interferents.  相似文献   

4.
Room temperature 1-butyl-3-methylimidazolium tetraflouroborate ([BMIM][BF4]) ionic liquid was employed for dispersion of multi walled carbon nanotubes (MWCNTs) and the formation of nanocomposite on the surface of a carbon-ceramic electrode. The surface of the modified electrode was characterized using scanning electron microscopy and electrochemical impedance spectroscopy. The modified electrode exhibited excellent electrochemical activity to oxidation of dopamine (DA); whereas electro oxidation of ascorbic acid (AA) was not seen and electro oxidation of uric acid (UA) appeared at a more positive potential than DA. The multi walled carbon nanotube-ionic liquid nanocomposite modified carbon-ceramic electrode was used for the selective determination of DA in the presence of high levels of AA and UA using differential pulse voltammetry. The calibration curve for DA was linear in the range of 3.00 to 130 µM with the detection limit (S/N=3) of 0.87 µM. The present electrode was successfully applied to the determination of DA in some commercial pharmaceutical samples and human blood serum.   相似文献   

5.
In this article, a detailed electrochemical study of a novel 6‐ferrocenylhexanethiol (HS(CH2)6Fc) self‐assembled multiwalled carbon nanotubes‐Au nanoparticles (MWNTs/Au NPs) composite film was demonstrated. MWNTs/Au NPs were prepared by one‐step in situ synthesis using linear polyethyleneimine (PEI) as bifunctionalizing agent. HS(CH2)6Fc, which acted as the redox mediator, was self‐assembled to MWNTs/Au NPs via Au‐S bond. Transmission electron microscopy (TEM), energy‐dispersive X‐ray analysis (EDX), Fourier transformed infrared absorption spectroscopy (FT‐IR), UV‐visible absorption spectroscopy, and cyclic voltammetry were used to characterize the properties of the MWNTs/Au NPs/HS(CH2)6Fc nanocomposite. The preparation of the nanocomposite was very simple and effectively prevented the leakage of the HS(CH2)6Fc mediator during measurements. The electrooxidation of AA could be catalyzed by Fc/Fc+ couple as a mediator and had a higher electrochemical response due to the unique performance of MWNTs/Au NPs. The nanocomposite modified electrode exhibited excellent catalytic efficiency, high sensitivity, good stability, fast response (within 3 s) and low detection limit toward the oxidation of AA at a lower potential.  相似文献   

6.
The oxidation of phenosafranine at glassy carbon electrode gives rise to stable redox active electropolymerized film containing a polyazine moiety (poly(phenosafranine)). The redox response of the poly(phenosafranine) film was observed at the modified electrode at different pH and the pH dependence of the peak potential is 60 mV/pH, which is very close to the expected Nernstian behavior. The apparent diffusion coefficient (Dapp) of poly(phenosafranine) film was measured as 2.51 × 10−9 cm2/s. This film exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards ascorbic acid (AA), dopamine (DA) and serotonin with activation overpotential, which is 200 mV lower than that of the bare electrode for AA oxidation. Using differential pulse voltammetry (DPV) studies, the limit of detection of DA in the presence of AA is estimated to be in the submicromolar regime. This method has been used for determining DA and AA concentrations in real samples with satisfactory results.  相似文献   

7.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   

8.
《Electroanalysis》2004,16(21):1777-1784
The surface of boron‐doped diamond (BDD) electrode is modified by the polymer film for the first time. The cationic polymer film of N,N‐dimethylaniline (DMA) is electrochemically deposited on BDD electrode surface. This polymer (PDMA) film‐coated BDD electrode is used as a sensor which selectively detect dopamine (DA) in the presence of ascorbic acid (AA). This electrode also can detect both DA and its metabolite, 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the presence of AA in the range of the physiological concentrations of these species. Favorable ionic interaction (i.e., electrostatic attraction) between the PDMA film and AA or DOPAC lowers their oxidation potentials and enhances the current response for AA and DOPAC compared to that at the bare electrode. The PDMA film also shows a hydrophobic interaction with DA and DOPAC. In cyclic voltammetric measurements, the PDMA film‐coated electrode can successfully separate the oxidation potentials for AA and DA coexisting in the same solution and the separation is about 200 mV. AA oxidizes at more negative potential than DA. In square‐wave voltammetry, the sensitivity of the PDMA film‐coated BDD electrode for DA in the presence of higher concentration of AA is higher than that of the PDMA film‐coated glassy carbon electrode. The hydrodynamic amperometric experiments confirm that the oxidation of AA is not affected by the oxidized product of DA and vice versa. So, unlike the bare electrode the catalytic oxidation of AA by the oxidized DA is eliminated at the PDMA film‐coated BDD electrode. The sensitivities of the modified electrode for AA, DA and DOPAC, which are present in the same solution with their physiological concentration ratios, are calculated to be 0.070, 0.363 and 0.084 μA μM?1, respectively. The modified electrode exhibits a stable and sensitive response to DA.  相似文献   

9.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

10.
朱小红  林祥钦 《中国化学》2009,27(6):1103-1109
用循环伏安法(CV)选择不同电位区间来电聚合烟酰胺(NA)得到了两种聚合物膜修饰电极:poly-niacinamide/GCE (poly-NA/GCE)和poly- nicotinic acid /GCE (poly-NC/GCE)。这两电极都具有显著电化学催化作用,能明显地降低多巴胺(DA)、尿酸(UA)和抗坏血酸(AA)的氧化过电位,并在混合溶液中使这些物质的氧化峰电位距离足够大,可进行三物质的同时测定。poly-NC/GCE的电催化性能更好一些,用差分脉冲伏安法(DPV)测定抗坏血酸,线性范围为75–3000 µmol L-1,电流灵敏度为5.6 mA•L•mol-1;测定多巴胺,线性范围为0.37 – 16 µmol L-1,电流灵敏度为1140 mA•L•mol-1; 测定尿酸,线性范围为0.74 – 230 µmol L-1,电流灵敏度为102 mA•L•mol-1。该电极具有很高的灵敏度、选择性和抗污染能力。  相似文献   

11.
Dopamine (DA) is a significant neurotransmitter in the central nervous system, coexisting with uric acid (UA) and ascorbic acid (AA). UA and AA are easily oxidizable compounds having potentials close to that of DA for electrochemical analysis, resulting in overlapping voltammetric response. In this work, a novel molecularly imprinted (MI) electrochemical sensor was proposed for selective determination of DA (in the presence of up to 80‐fold excess of UA and AA), relying on gold nanoparticles (Aunano)‐decorated glassy carbon (GC) electrode coated with poly(carbazole (Cz)‐co‐aniline (ANI)) copolymer film incorporating DA as template (DA imprinted‐GC/P(Cz‐co‐ANI)‐Aunano electrode, DA‐MIP‐Aunano electrode). The DA recognizing sensor electrode showed great electroactivity for analyte oxidation in 0.2 mol L?1 pH 7 phosphate buffer. Square wave voltammetry (SWV) was performed within 10?4–10?5 mol L?1 of DA, of which the oxidation peak potential was observed at 0.16 V. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0×10?6 and 6.7×10?6 mol L?1, respectively. Binary and ternary synthetic mixtures of DA‐UA, DA‐AA and DA‐UA‐AA yielded excellent recoveries for DA. Additionally, DA was quantitatively recovered from a real sample of bovine serum spiked with DA, and determined in concentrated dopamine injection solution. The developed SWV method was statistically validated against a literature potentiodynamic method using a caffeic acid modified‐GC electrode.  相似文献   

12.
Jia D  Dai J  Yuan H  Lei L  Xiao D 《Talanta》2011,85(5):2344-2351
Gold nanoparticles-poly(luminol) (Plu-AuNPs) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode (β-CD-MWCNTs/Plu-AuNPs/GCE) was successfully prepared for simultaneous determination of dopamine (DA) and uric acid (UA). The surface of the modified electrode has been characterized by X-ray photo-electron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscope (SEM) and transmission electron microscope (TEM). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) have been used to investigate the β-CD-MWCNTs/Plu-AuNPs composite film. Gold nanoparticles anchored into poly(luminol) film exhibited catalytic activity for DA. MWCNTs with incorporated β-CD can greatly promote the direct electron transfer. In 0.10 M phosphate buffer solution (PBS, pH 7.0), the DPV response of the β-CD-MWCNTs/Plu-AuNPs/GCE sensor to DA is about 8-fold as compared with the Plu-AuNPs/GCE sensor, and the detection limit for DA is about one order of magnitude lower than the Plu-AuNPs/GCE sensor. The steady-state current response increases linearly with DA concentration from 1.0 × 10−6 to 5.6 × 10−5 M with a low detection limit (S/N = 3) of 1.9 × 10−7 M. Moreover, the interferences of ascorbic acid (AA) and uric acid (UA) are effectively diminished. The applicability of the prepared electrode has been demonstrated by measuring DA contents in dopamine hydrochloride injection.  相似文献   

13.
Highly stable Nafion‐covered hexacyanoferrate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Fe(CN)64?/Naf) film modified glassy carbon electrode (GCE), for the selective detection of dopamine (DA) in the presence of ascorbic acid (AA), was prepared by first ion‐exchanging Fe(CN)64? into PLL‐GA coating on GCE then sealing it with a Nafion outer layer. The Nafion over layer is crucial in preventing leaching of Fe(CN)64? ions from the inner layer. The first layer was acting as electrocatalyst for DA oxidation and the outer coating acted as discriminating layer for selective permeation of DA in the presence of interfering anionic species. More than 90% of the initial response was retained after coating with the Nafion protecting layer compared to a huge loss (>60%) without Nafion outer layer. 5% Nafion coating was identified as optimum thickness for the selective detection of DA in the presence of AA.  相似文献   

14.
Fenghua Li 《Talanta》2010,81(3):1063-5138
A water-soluble and electroactive composite - Pt nanoparticles/polyelectrolyte-functionalized ionic liquid (PFIL)/graphene sheets (GS) nanocomposite was synthesized in one pot. The structure and composition of the Pt/PFIL/GS nanocomposite were studied by means of ultraviolet-visible (UV-vis) and X-ray photoelectron spectra (XPS). Scanning electron microscopy (SEM) and transmission electron microscope (TEM) images reveal Pt nanoparticles are densely dispersed on the transparent thin PFIL-functionalized graphene sheets. The obtained Pt/PFIL/GS nanocomposite-modified electrode was fabricated to simultaneously determine ascorbic acid (AA) and dopamine (DA) by cyclic voltammetry. It is worthwhile noting that the difference between the two peak potentials of AA and DA oxidation is over 200 mV, which leads to distinguishing AA from DA. The detection of increasing concentrations of AA in the presence of DA and the oxidation of continuous addition of DA in the presence of AA were also studied using differential pulse voltammetry. The proposed sensor in real sample analysis was also examined in human urine samples. Three independent oxidation peaks appear in urine sample containing AA and DA. Therefore, the Pt/PFIL/GS nanocomposite might offer a good possibility for applying it to routine analysis of AA and DA in clinical use.  相似文献   

15.
A composite film (MWCNTs-PNF) which contains multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(new fuchsin) (PNF) has been synthesized on glassy carbon electrode (GCE), gold (Au) and indium tin oxide (ITO) by potentiostatic methods. The presence of MWCNTs in the composite film enhances surface coverage concentration (Γ) of PNF to ≈176.5%, and increases the electron transfer rate constant (ks) to ≈346%. The composite film also exhibits promising enhanced electrocatalytic activity towards the mixture of biochemical compounds such as adenine (AD), guanine (GU) and thymine (THY). The surface morphology of the composite film deposited on ITO has been studied using scanning electron microscopy and atomic force microscopy. These two techniques reveal that the PNF incorporated on MWCNTs. Electrochemical quartz crystal microbalance study reveals the enhancement in the functional properties of MWCNTs and PNF. The electrocatalytic responses of analytes at MWCNTs and MWCNTs-PNF films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electrocatalysis studies, well separated voltammetric peaks have been obtained at the composite film for AD, GU and THY, with the peak separation of 320.3 and 132.7 mV between GU-AD and AD-THY respectively. The sensitivity of the composite film towards AD, GU and THY in DPV technique is 218.18, 12.62 and 78.22 mA M−1 cm−2 respectively, which are higher than MWCNTs film. Further, electroanalytical studies of AD, GU and THY present in single-strand deoxyribonucleic acid (ssDNA) have been carried out using semi-derivative CV and DPV.  相似文献   

16.
In this study, a nanocomposite of 3, 4, 9, 10‐perylenetetracarboxylic acid and L‐cysteine (PTCA‐Cys) with satisfactory water‐solubility and film‐forming ability was prepared and worked as substrate for modifying the glassy carbon electrode. Then, gold nanoparticles (AuNPs) were immobilized to achieve a PTCA‐Cys‐AuNPs modified electrode which provided more reaction positions on the sensor. Scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and different pulse voltammetry were employed to characterize the assembly process of the sensor. The constructed sensor displayed desirable sensitivity, selectivity and stability towards the simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Under the optimal experimental conditions, the oxidation peaks of AA, DA and UA appeared at 64, 240 and 376 mV, respectively. The corresponding linear response ranges were 3.2–435, 0.04–100 and 0.80–297 μM, and the detection limits were 1.1, 0.010 and 0.27 μM (S/N=3), respectively.  相似文献   

17.
Electrochemically polymerized luminol film on a glassy carbon electrode (GCE) surface has been used as a sensor for selective detection of uric acid (UA) in the presence of ascorbic acid (AA) and dopamine (DA). Cyclic voltammetry was used to evaluate the electrochemical properties of the poly(luminol) film modified electrode. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used for surface characterizations. The bare GCE failed to distinguish the oxidation peaks of AA, DA and UA in phosphate buffer solution (pH 7.0), while the poly(luminol) modified electrode could separate them efficiently. In differential pulse voltammetric (DPV) measurements, the modified GCE could separate AA and DA signals from UA, allowing the selective determination of UA. Using DPV, the linear range (3.0×10?5 to 1.0×10?3 M) and the detection limit (2.0×10?6 M) were estimated for measurement of UA in physiological condition. The applicability of the prepared electrode was demonstrated by measuring UA in human urine samples.  相似文献   

18.
A non‐covalent functionalization based on a copper tetraphenylporphyrin/chemically reduced graphene oxide (Cu‐TPP/CRGO) nanocomposite is demonstrated for selective determination of dopamine (DA) in pharmaceutical and biological samples. A homogeneous electron‐rich environment can be created on the graphene surface by Cu‐TPP due to the π–π non‐covalent stacking interaction. The synthesized Cu‐TPP/CRGO nanocomposite was characterized using scanning electron microscopy NMR, ultraviolet–visible and electrochemical impedance spectroscopies. The electrocatalytic activity of DA was evaluated using cyclic voltammetry and differential pulse voltammetry. The oxidation peak current (Ipa) of DA increased linearly with increasing concentration of DA in the range 2–200 μM. The detection limit was calculated as 0.76 μM with a high sensitivity of 2.46 μA μM?1 cm ? 2. The practicality of the proposed DA sensor was evaluated in DA hydrochloride injection, human urine and saliva, and showed satisfactory recovery results for the detection of DA. In addition, the Cu‐TPP/CRGO nanocomposite‐modified electrode showed excellent stability, repeatability and reproducibility towards the detection of DA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
采用脉冲电位法(PPSM)结合聚苯胺(PANI)的层层自组装制备了Pd/PANI交替沉积纳米多层膜, 并用于抗坏血酸(AA)和多巴胺(DA)的检测. 实验发现, 多层膜结构形貌及催化性能受前躯体K2PdCl6浓度、 脉冲条件及膜厚度等影响. 当K2PdCl6浓度为2×10-3 mol/L, 阴极脉冲电位为-0.3 V, 阶跃次数为17时, 5层Pd/PANI修饰玻碳电极对AA和DA的催化性能最佳; 在0.1 mol/L磷酸盐缓冲液中, AA和DA的氧化峰明显分离[ΔEp(AA, DA)=160 mV], 其峰电流与浓度分别在5×10-5~4×10-4和4×10-5~1×10-4 mol/L范围内呈较好线性关系, 实现了对AA和DA的同时测定. 该修饰电极具有良好的抗干扰性和稳定性.  相似文献   

20.
《Electroanalysis》2018,30(9):2035-2043
To improve the performance of dopamine (DA) detection in the presence of ascorbic acid (AA) and uric acid (UA), sodium diphenylamine sulfonate/polypyrrole/multi‐walled carbon nanotubes (SDPAS/PPy/CNTs) film was fabricated on the surface of gold electrode through one‐pot polymerization initiated by electrochemical oxidation. SDPAS were covalently embedded into the backbone of PPy to endow the resultant film with numerous negative‐charged terminals, resulting in selective pre‐adsorption of protonated DA+ on the electrode and switching the following anodic reaction to be an adsorption‐controlled process. The detection of DA in the presence of AA and UA by square wave voltammetry method showed an outstanding repeatability with the relative standard deviation of 0.45 %. A good linear relationship was observed between the oxidative peak current and the concentration of DA in the range of 0.827–104 μM (R2=0.993), and the limit of detection (LOD) was calculated to be 0.105 μM (S/N=3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号