共查询到18条相似文献,搜索用时 15 毫秒
1.
Effect of Support on Metathesis of n‐Decane: Drastic Improvement in Alkane Metathesis with WMe5 Linked to Silica–Alumina 下载免费PDF全文
Dr. Manoja K. Samantaray Dr. Raju Dey Dr. Edy Abou‐Hamad Ali Hamieh Prof. Jean‐Marie Basset 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(16):6100-6106
[WMe6] ( 1 ) supported on the surface of SiO2–Al2O3(500) ( 2 ) has been extensively characterized by solid‐state NMR spectroscopy, elemental analysis, and gas quantification, which clearly reveal the formation of a mixture of monopodal and bipodal species with the migration of methyl from W to Al. The supported species SiO2–Al2O3(500) ( 2 ) transformed at 120 °C into two types of carbynic centers, one of which is cationic and the other neutral. These species are very efficient for the metathesis of n‐decane. Comparison with already‐synthesized neutral bipodal tungsten indicates that the high increase in activity is due to the cationic character of the grafted tungsten. 相似文献
2.
Alkyne Metathesis with Silica‐Supported and Molecular Catalysts at Parts‐per‐Million Loadings 下载免费PDF全文
Deven P. Estes Martin Casey Alexey Fedorov Matthias Tamm Christophe Copéret 《Angewandte Chemie (International ed. in English)》2016,55(45):13960-13964
Improvement of the activity, stability, and chemoselectivity of alkyne‐metathesis catalysts is necessary before this promising methodology can become a routine method to construct C≡C triple bonds. Herein, we show that grafting of the known molecular catalyst [MesC≡Mo(OtBuF6)3] ( 1 , Mes=2,4,6‐trimethylphenyl, OtBuF6=hexafluoro‐tert‐butoxy) onto partially dehydroxylated silica gave a well‐defined silica‐supported active alkyne‐metathesis catalyst [(≡SiO)Mo(≡CMes)(OtBuF6)2] ( 1 /SiO2‐700). Both 1 and 1 /SiO2‐700 showed very high activity, selectivity, and stability in the self‐metathesis of a variety of carefully purified alkynes, even at parts‐per‐million catalyst loadings. Remarkably, the lower turnover frequencies observed for 1 /SiO2‐700 by comparison to 1 do not prevent the achievement of high turnover numbers. We attribute the lower reactivity of 1 /SiO2‐700 to the rigidity of the surface Mo species owing to the strong interaction of the metal site with the silica surface. 相似文献
3.
4.
Régis M. Gauvin Dr. Frank Buch Laurent Delevoye Dr. Sjoerd Harder Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(17):4382-4393
Bound to stay heteroleptic : Grafting of homoleptic benzyl and amide calcium reagents onto silica affords well‐defined supported heteroleptic species, catalytically active in hydrosilylation, hydroamination, and styrene polymerization. The fact that attempts to generate a molecular model were thwarted by the Schlenk equilibrium affording the homoleptic compound (see scheme) emphasizes the importance of immobilization as an approach for the syntheses of heteroleptic calcium complexes.
5.
Pavel A. Zhizhko Florian Toth Christopher P. Gordon Ka Wing Chan Wei‐Chih Liao Victor Mougel Christophe Copret 《Helvetica chimica acta》2019,102(10)
5‐Coordinated methoxybenzylidene complexes M(=NAr)(=CH?C6H4?o‐OMe)(OtBuF3)2 (Ar=2,6‐iPr2C6H3; tBuF3=CMe2(CF3)) of Mo ( 1mMo ) and W ( 1mW ) were synthesized by cross‐metathesis from the corresponding neophylidene/neopentylidene precursors and o‐methoxystyrene. 1mMo and 1mW were grafted onto the surface of silica partially dehydroxylated at 700 °C to give well‐defined silica‐supported alkylidenes (≡SiO)M(=NAr)(=CH?C6H4?o‐OMe)(OtBuF3) (M=Mo ( 1Mo ), W ( 1W )). Supported methoxybenzylidene complexes were tested in metathesis of cis‐4‐nonene, 1‐nonene, and ethyl oleate, and compared to their molecular precursors and supported classical analogs (≡SiO)M(=NAr)(=CHCMe2R)(OtBuF3) (M=Mo, R=Ph ( 2Mo ), M=W, R=Me ( 2W )). Both grafted complexes 1Mo and 1W show significantly better performance as compared to their molecular precursors 1mMo and 1mW but are less efficient than the classical 4‐coordinated alkylidenes 2Mo and 2W . Noteworthy, both 1Mo and 1W can reach equilibrium conversion in metathesis of cis‐4‐nonene at catalyst loadings as low as 50 ppm. 相似文献
6.
Neutral and Cationic Molybdenum Imido Alkylidene N‐Heterocyclic Carbene Complexes: Reactivity in Selected Olefin Metathesis Reactions and Immobilization on Silica 下载免费PDF全文
Suman Sen Roman Schowner Dominik A. Imbrich Dr. Wolfgang Frey Prof. Michael Hunger Prof. Michael R. Buchmeiser 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(39):13778-13787
The synthesis and single‐crystal X‐ray structures of the novel molybdenum imido alkylidene N‐heterocyclic carbene complexes [Mo(N‐2,6‐Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf)2] ( 3 ), [Mo(N‐2,6‐Me2C6H3)(IMes)(CHCMe2Ph)(OTf)2] ( 4 ), [Mo(N‐2,6‐Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf){OCH(CF3)2}] ( 5 ), [Mo(N‐2,6‐Me2C6H3)(CH3CN)(IMesH2)(CHCMe2Ph)(OTf)]+ BArF? ( 6 ), [Mo(N‐2,6‐Cl2C6H3)(IMesH2)(CHCMe3)(OTf)2] ( 7 ) and [Mo(N‐2,6‐Cl2C6H3)(IMes)(CHCMe3)(OTf)2] ( 8 ) are reported (IMesH2=1,3‐dimesitylimidazolidin‐2‐ylidene, IMes=1,3‐dimesitylimidazolin‐2‐ylidene, BArF?=tetrakis‐[3,5‐bis(trifluoromethyl)phenyl] borate, OTf=CF3SO3?). Also, silica‐immobilized versions I1 and I2 were prepared. Catalysts 3 – 8 , I1 and I2 were used in homo‐, cross‐, and ring‐closing metathesis (RCM) reactions and in the cyclopolymerization of α,ω‐diynes. In the RCM of α,ω‐dienes, in the homometathesis of 1‐alkenes, and in the ethenolysis of cyclooctene, turnover numbers (TONs) up to 100 000, 210 000 and 30 000, respectively, were achieved. With I1 and I2 , virtually Mo‐free products were obtained (<3 ppm Mo). With 1,6‐hepta‐ and 1,7‐octadiynes, catalysts 3 , 4 , and 5 allowed for the regioselective cyclopolymerization of 4,4‐bis(ethoxycarbonyl)‐1,6‐heptadiyne, 4,4‐bis(hydroxymethyl)‐1,6‐heptadiyne, 4,4‐bis[(3,5‐diethoxybenzoyloxy)methyl]‐1,6‐heptadiyne, 4,4,5,5‐tetrakis(ethoxycarbonyl)‐1,7‐octadiyne, and 1,6‐heptadiyne‐4‐carboxylic acid, underlining the high functional‐group tolerance of these novel Group 6 metal alkylidenes. 相似文献
7.
Bilel Hamzaoui Dr. Jérémie D. A. Pelletier Dr. Edy Abou‐Hamad Dr. Yin Chen Dr. Mohamed El Eter Dr. Edrisse Chermak Prof. Luigi Cavallo Prof. Jean‐Marie Basset 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(9):3000-3008
Single‐site, well‐defined, silica‐supported tantallaaziridine intermediates [≡Si‐O‐Ta(η2‐NRCH2)(NMe2)2] [R=Me ( 2 ), Ph ( 3 )] were prepared from silica‐supported tetrakis(dimethylamido)tantalum [≡Si‐O‐Ta(NMe2)4] ( 1 ) and fully characterized by FTIR spectroscopy, elemental analysis, and 1H,13C HETCOR and DQ TQ solid‐state (SS) NMR spectroscopy. The formation mechanism, by β‐H abstraction, was investigated by SS NMR spectroscopy and supported by DFT calculations. The C?H activation of the dimethylamide ligand is favored for R=Ph. The results from catalytic testing in the hydroaminoalkylation of alkenes were consistent with the N‐alkyl aryl amine substrates being more efficient than N‐dialkyl amines. 相似文献
8.
Heteronuclear NMR Spectroscopy as a Surface‐Selective Technique: A Unique Look at the Hydroxyl Groups of γ‐Alumina. 下载免费PDF全文
Dr. Mostafa Taoufik Dr. Kai C. Szeto Dr. Nicolas Merle Dr. Iker Del Rosal Dr. Laurent Maron Dr. Julien Trébosc Dr. Grégory Tricot Dr. Régis M. Gauvin Dr. Laurent Delevoye 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(14):4038-4046
The surface hydroxyl groups of γ‐alumina dehydroxylated at 500 °C were studied by a combination of one‐ and two‐dimensional homo‐ and heteronuclear 1H and 27Al NMR spectroscopy at high magnetic field. In particular, by harnessing 1H–27Al dipolar interactions, a high selectivity was achieved in unveiling the topology of the alumina surface. The terminal versus bridging character of the hydroxyl groups observed in the 1H magic‐angle spinning (MAS) NMR spectrum was demonstrated thanks to 1H–27Al RESPDOR (resonance‐echo saturation‐pulse double‐resonance). In a further step the hydroxyl groups were assigned to their aluminium neighbours thanks to a {1H}‐27Al dipolar heteronuclear multiple quantum correlation (D‐HMQC), which was used to establish a first coordination map. Then, in combination with 1H–1H double quantum (DQ) MAS, these elements helped to reveal intimate structural features of the surface hydroxyls. Finally, the nature of a peculiar reactive hydroxyl group was demonstrated following this methodology in the case of CO2 reactivity with alumina. 相似文献
9.
Cover Picture: Heteronuclear NMR Spectroscopy as a Surface‐Selective Technique: A Unique Look at the Hydroxyl Groups of γ‐Alumina. (Chem. Eur. J. 14/2014) 下载免费PDF全文
Dr. Mostafa Taoufik Dr. Kai C. Szeto Dr. Nicolas Merle Dr. Iker Del Rosal Dr. Laurent Maron Dr. Julien Trébosc Dr. Grégory Tricot Dr. Régis M. Gauvin Dr. Laurent Delevoye 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(14):3853-3853
10.
Herbert A. Früchtl Dr. Tanja van Mourik Dr. Chris J. Pickard Dr. J. Derek Woollins Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(11):2687-2692
A riddle solved! Despite its simple formula, the structure of the (SCN)x polymer has remained elusive since its first synthesis in 1929. From energetics as well as NMR chemical shifts, based on DFT calculations, we have strong evidence that it is indeed a tangle of linear chains, made up from N‐linked S2C2N five‐membered rings.
11.
12.
Dr. Andre Sutrisno Dr. Victor V. Terskikh Qi Shi Zhengwei Song Prof. Jinxiang Dong San Yuan Ding Prof. Wei Wang Bianca R. Provost Dr. Thomas D. Daff Prof. Tom K. Woo Prof. Yining Huang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(39):12251-12259
Metal–organic frameworks (MOFs) are an extremely important class of porous materials with many applications. The metal centers in many important MOFs are zinc cations. However, their Zn environments have not been characterized directly by 67Zn solid‐state NMR (SSNMR) spectroscopy. This is because 67Zn (I=5/2) is unreceptive with many unfavorable NMR characteristics, leading to very low sensitivity. In this work, we report, for the first time, a 67Zn natural abundance SSNMR spectroscopic study of several representative zeolitic imidazolate frameworks (ZIFs) and MOFs at an ultrahigh magnetic field of 21.1 T. Our work demonstrates that 67Zn magic‐angle spinning (MAS) NMR spectra are highly sensitive to the local Zn environment and can differentiate non‐equivalent Zn sites. The 67Zn NMR parameters can be predicted by theoretical calculations. Through the study of MOF‐5 desolvation, we show that with the aid of computational modeling, 67Zn NMR spectroscopy can provide valuable structural information on the MOF systems with structures that are not well described. Using ZIF‐8 as an example, we further demonstrate that 67Zn NMR spectroscopy is highly sensitive to the guest molecules present inside the cavities. Our work also shows that a combination of 67Zn NMR data and molecular dynamics simulation can reveal detailed information on the distribution and the dynamics of the guest species. The present work establishes 67Zn SSNMR spectroscopy as a new tool complementary to X‐ray diffraction for solving outstanding structural problems and for determining the structures of many new MOFs yet to come. 相似文献
13.
Sarah J. Dolman Elizabeth S. Sattely Amir H. Hoveyda Richard R. Schrock 《ChemInform》2002,33(43):28-28
14.
Saad Sene Marc Reinholdt Dr. Guillaume Renaudin Dr. Dorothée Berthomieu Prof. Claudio M. Zicovich‐Wilson Prof. Christel Gervais Dr. Philippe Gaveau Prof. Christian Bonhomme Dr. Yaroslav Filinchuk Prof. Mark E. Smith Prof. Jean‐Marie Nedelec Dr. Sylvie Bégu Dr. P. Hubert Mutin Dr. Danielle Laurencin 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(3):797-797
15.
16.
Saad Sene Marc Reinholdt Dr. Guillaume Renaudin Dr. Dorothée Berthomieu Prof. Claudio M. Zicovich‐Wilson Prof. Christel Gervais Dr. Philippe Gaveau Prof. Christian Bonhomme Dr. Yaroslav Filinchuk Prof. Mark E. Smith Prof. Jean‐Marie Nedelec Dr. Sylvie Bégu Dr. P. Hubert Mutin Dr. Danielle Laurencin 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(3):880-891
Boronic acids (R‐B(OH)2) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R‐B(OH)3?) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C4H9‐B(OH)3]2, which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid‐state NMR spectroscopy (1H, 13C, 11B and 43Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave—GIPAW—method). These data allow relationships between the geometry around the OH groups in boronates and the IR and 1H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic–inorganic materials containing boronate building blocks. 相似文献
17.
Alexandrine Flambard Dr. Frank H. Köhler Prof. Dr. Rodrigue Lescouëzec Dr. 《Angewandte Chemie (International ed. in English)》2009,48(9):1673-1676
No legendary Prussian order! The distribution of vacancies in Prussian blue analogues is not random, and the spin density on the Cd2+ ion varies depending on the number of paramagnetic ions in its surroundings. This conclusion follows from 113Cd solid‐state magic‐angle spinning NMR studies of [Cd3{Fe/Co(CN)6}2]?15 H2O, where the presence of small but significant spin density on the observed 113Cd nucleus leads to improved spectral resolution.
18.
Compensating Pulse Imperfections in Solid‐State NMR Spectroscopy: A Key to Better Reproducibility and Performance 下载免费PDF全文
Johannes J. Wittmann Dr. Kazuyuki Takeda Prof. Dr. Beat H. Meier Prof. Dr. Matthias Ernst 《Angewandte Chemie (International ed. in English)》2015,54(43):12592-12596
The power and versatility of NMR spectroscopy is strongly related to the ability to manipulate NMR interactions by the application of radio‐frequency (rf) pulse sequences. Unfortunately, the rf fields seen by the spins differ from the ones programmed by the experimentalist. Pulse transients, i.e., deviations of the amplitude and phase of the rf fields from the desired values, can have a severe impact on the performance of pulse sequences and can lead to inconsistent results. Here, we demonstrate how transient‐compensated pulses can greatly improve the efficiency and reproducibility of NMR experiments. The implementation is based on a measurement of the characteristics of the resonance circuit and does not rely on an experimental optimization of the NMR signal. We show how the pulse sequence has to be modified to use it with transient‐compensated pulses. The efficiency and reproducibility of the transient‐compensated sequence is greatly superior to the original POST‐C7 sequence. 相似文献