首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous recent publications detail higher absorption and photovoltaic performance within organic photovoltaic (OPV) devices which are loaded with Au or Ag nanoparticles to leverage the light management properties of the localized surface plasmon resonance (LSPR). This report details the impact upon film morphology and polymer/nanoparticle interactions caused by incorporation of polystyrene‐coated Au nanoparticles (Au/PS) into the P3HT:PC61BM bulk heterojunction film. Nanostructural analysis by transmission electron microscopy and X‐ray scattering reveals tunable Au/PS particle assembly that depends upon the choice of casting solvent, polymer chain length, film drying time, and Au/PS particle loading density. This Au/PS particle assembly has implications on the spectral position of the Au nanoparticle LSPR, which shifts from 535 nm for individually dispersed particles in toluene to 650 nm for particles arranged in large clusters within the P3HT:PC61BM matrix. These results suggest a critical impact from PS/P3HT phase separation, which causes controlled assembly of a separate Au/PS phase in the nanoparticle/OPV composite; controlled Au/PS phase formation provides a blueprint for designing AuNP/OPV hybrid films that impart tunable optical behavior and potentially improve photovoltaic performance. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 709–720  相似文献   

2.
Summary: Polyaniline (PANI) is successfully self‐assembled with poly(N‐vinylpyrrolidone) (PVP) into aqueous nanocolloids. The typical morphology of the colloids is studied by atomic force microscopy (AFM), which reveals spherical nanoparticles with a diameter of 80–150 nm. A possible mechanism for such a post‐synthetic self‐assembly process is proposed.

AFM micrograph of PANI aqueous nanocolloids stabilized by PVP via a novel post‐synthetic self‐assembly method.  相似文献   


3.
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

4.
《中国化学》2017,35(7):1125-1132
A novel biocompatible polymer was prepared by grafting the derivate of β ‐cyclodextrin (6‐SH ‐β ‐CD ) onto poly(3,4‐dihydroxycinnamic acid) (PDHCA ) via Michael addition. PDHCA ‐β ‐CD nanoparticles were prepared by the self‐assembly of amphiphilic PDHCA ‐β ‐CD polymer with N,N ‐dimethylformamide (DMF ) as good solvent and water as poor solvent. The PDHCA ‐β ‐CD nanoparticles were monodispersed with spherical morphology as shown in the scanning electron microscopic (SEM ) images in accord with the result of dynamic light scattering (DLS ) measurement. The size of the nanoparticles could be controlled from 60 to 180 nm by tuning the grafting degree (GD ) of PDHCA ‐β ‐CD polymer and also significantly influenced by the amount of water used during the process. These as‐prepared nanoparticles were stable without any significant change in the particle size after six‐months’ storage and even after being irradiated by UV at λ >280 nm for hours. The formation mechanism of PDHCA ‐β ‐CD nanoparticles was explored. The content of doxorubicin (DOX ) loaded onto the nanoparticles was up to 39% with relatively high loading efficiency (approximately 78.8% of initial DOX introduced was loaded). In vitro release studies suggested that DOX released slowly from PDHCA ‐β ‐CD nanoparticles. These features strongly support the potential of developing PDHCA ‐β ‐CD nanoparticles as carriers for the controlled delivery of drug.  相似文献   

5.
Stable and aggregation‐free “gold nanoparticle–polymeric micelle” conjugates were prepared using a new and simple protocol enabled by the hydrogen bonding between surface‐capping ligands and polymeric micelles. Individual gold nanoparticles were initially capped using a phosphatidylthio–ethanol lipid and further conjugated with a star poly(styrene‐block‐glutamic acid) copolymer micelle using a one‐pot preparation method. The morphology and stability of these gold–polymer conjugates were characterized using transmission electron microscopy (TEM) and UV–vis spectroscopy. The self‐assembly of this class of polymer‐b‐polypeptide in aqueous an medium to form spherical micelles and further their intermicelle reorganization to form necklace‐like chains was also investigated. TEM and laser light scattering techniques were employed to study the morphology and size of these micelles. Polymeric micelles were formed with diameters in the range of 65–75 nm, and supermicellular patterns were observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3570–3579, 2007  相似文献   

6.
The dispersion reversible addition‐fragmentation chain transfer (RAFT) polymerization of 4‐vinylpyridine in toluene in the presence of the polystyrene dithiobenzoate (PS‐CTA) macro‐RAFT agent with different chain length is discussed. The RAFT polymerization undergoes an initial slow homogeneous polymerization and a subsequent fast heterogeneous one. The RAFT polymerization rate is dependent on the PS‐CTA chain length, and short PS‐CTA generally leads to fast RAFT polymerization. The dispersion RAFT polymerization induces the self‐assembly of the in situ synthesized polystyrene‐b‐poly(4‐vinylpyridine) block copolymer into highly concentrated block copolymer nano‐objects. The PS‐CTA chain length exerts great influence on the particle nucleation and the size and morphology of the block copolymer nano‐objects. It is found, short PS‐CTA leads to fast particle nucleation and tends to produce large‐sized vesicles or large‐compound micelles, and long PS‐CTA leads to formation of small‐sized nanospheres. Comparison between the polymerization‐induced self‐assembly and self‐assembly of block copolymer in the block‐selective solvent is made, and the great difference between the two methods is demonstrated. The present study is anticipated to be useful to reveal the chain extension and the particle growth of block copolymer during the RAFT polymerization under dispersion condition. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Easy access to discrete nanoclusters in metal‐folded single‐chain nanoparticles (metal‐SCNPs) and independent ultrafine sudomains in the assemblies via coordination‐driven self‐assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1H NMR, dynamic light scattering, and NMR diffusion‐ordered spectroscopy results demonstrate self‐assembly into metal‐SCNPs (>70% imidazole‐units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self‐assembly of metal‐SCNPs (pH 4.6–5.0) and shrinkage (pH 5.0–5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6–7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub‐5‐nm subdomains in metal‐SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media‐tunable discrete ultrafine interiors in metal‐SCNPs and assemblies have hence been achieved.  相似文献   

8.
The self‐assembly of dispersed polymer‐coated ferromagnetic nanoparticles into micron‐sized one‐dimensional mesostructures at a liquid–liquid interface was reported. When polystyrene‐coated Co nanoparticles (19 nm) are driven to an oil/water interface under zero‐field conditions, long (≈ 5 μm) chain‐like assemblies spontaneously form because of dipolar associations between the ferromagnetic nanoparticles. Direct imaging of the magnetic assembly process was achieved using a recently developed platform consisting of a biphasic oil/water system in which the oil phase was flash‐cured within 1 s upon ultraviolet light exposure. The nanoparticle assemblies embedded in the crosslinked phase were then imaged using atomic force microscopy. The effects of time, temperature, and colloid concentration on the self‐assembly process of dipolar nanoparticles were then investigated. Variation of either assembly time t or temperature T was found to be an interchangeable effect in the 1D organization process. Because of the dependence of chain length on the assembly conditions, we observed striking similarities between 1D nanoparticle self‐assembly and polymerization of small molecule monomers. This is the first in‐depth study of the parameters affecting the self‐assembly of dispersed, dipolar nanoparticles into extended mesostructures in the absence of a magnetic field. © 2008 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 46: 2267–2277, 2008  相似文献   

9.
Nanocomposite films [Ag/(PAH‐PSS)nPAH]m were fabricated on a silicon substrate using a time‐ and cost‐efficient spin‐assisted layer‐by‐layer (SA‐LbL) self‐assembly technique. A virtually monolayer‐like layer of self‐assembled silver nanoparticles was formed when deposition time increased to 30 min. It was found that polymer multilayers could effectively decrease the resistivity of silver nanoparticle monolayer, which was far higher than that of bulk silver metal; however, the resistivity of Ag/(PAH‐PSS)nPAH multilayer films increased along with the increasing of the number of polymer bilayers. XPS investigations showed that silver nanoparticles were partially oxidized, which might be the major cause of the high resistivity of silver nanoparticle monolayer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The sequential layer by layer self‐assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large‐scale highly ordered metal nano­arrays prepared from solvent annealed thin films of polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle–substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self‐assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle–substrate interaction and nanoparticle–polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer.

  相似文献   


11.
以水溶性聚合物为保护剂,采用化学还原法制备了银纳米粒子,分别利用透射电子显微镜、紫外可见光谱、同步光散射光谱等手段对其进行了表征,并探索了制备银纳米粒子的最佳实验条件。通过将银纳米粒子-聚合物溶液进行脱水,得到含有银纳米粒子的固态聚合物膜。将固态聚合物膜重新溶解于水,其水溶液的紫外可见光谱与脱水前的溶液进行了比较,发现两者性质并无明显差异。因此,将银纳米粒子分散固定在聚合物膜中是一种崭新而有效的银纳米粒子制备和存储方法。  相似文献   

12.
We have demonstrated a novel way to form thickness‐controllable polyelectrolyte‐film/nanoparticle patterns by using a plasma etching technique to form, first, a patterned self‐assembled monolayer surface, followed by layer‐by‐layer assembly of polyelectrolyte‐films/nanoparticles. Octadecyltrimethoxysilane (ODS) and (3‐aminopropyl)triethoxysilane (APTES) self‐assembled monolayers (SAMs) were used for polyelectrolyte‐film and nanoparticle patterning, respectively. The resolution of the proposed patterning method can easily reach approximately 2.5 μm. The height of the groove structure was tunable from approximately 2.5 to 150 nm. The suspended lipid membrane across the grooves was fabricated by incubating the patterned polyelectrolyte groove arrays in solutions of 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) giant unilamellar vesicles (GUVs). The method demonstrated here reveals a new path to create patterned 2D or 3D structures.  相似文献   

13.
A controlled co‐solvent vapor annealing system was designed and constructed to investigate the effects of solvent vapor activity during the rapid ambient quenching process on the morphology of a cylinder‐forming poly(styrene)‐b‐poly (ethylene oxide) (PS‐PEO) annealed in toluene and water vapor. A phase transformation from cylinders in the bulk to close‐packed spheres in swollen thin films occurred, which was reversed upon quenching with dry nitrogen. Quenching with humidified nitrogen preserved the spherical morphology but could significantly alter domain spacing and reduce long‐range order in the dried films under some circumstances. Specifically, long‐range order in the quenched films was found to decrease as the quenching humidity decreased from the humidity used during annealing, and the best long‐range order was obtained when the humidity remained consistent throughout both annealing and quenching. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1125–1130  相似文献   

14.
We demonstrate the formation of highly ordered hexagonal arrays of hybridized polystyrene–poly(4‐vinyl pyridine), PS–PVP, micelles with controllable size by solvent annealing techniques. Because the formation of hybridized micelles was prohibited in the mixture solutions of two different‐sized PS–PVP micelles, single‐layered films with bimodal self‐assemblies of small and large micelles were fabricated from the mixture solutions by adjusting their mixing ratios. When the single‐layered films were solvent annealed by saturated vapor of tetrahydrofuran (THF), on the other hand, small and large PS–PVP micelles in the bimodal self‐assemblies merged together to form hybridized micelles. In addition, the hybridized micelles arranged themselves in a highly ordered hexagonal array, the diameter and center‐to‐center distance of which were precisely adjusted by varying the mixing ratio of small to large micelles in the bimodal assemblies.

  相似文献   


15.
The synthesis of graphene oxide (GO)–polystyrene (PS) Pickering emulsions, as environment‐friendly nanostructures suitable for novel applications, has received significant attention in recent years. In this work, the synthesis and characterization of GO–PS nanocomposites through seeded emulsion polymerization and the selective light reflection properties of dry films have been reported. Amphiphilic molecule sulfonated 3‐pentadecyl phenol was used as a co‐surfactant to stabilize GO dispersions during the emulsion polymerization process. The particle size of the dispersions as measured by dynamic light scattering decreases from 540 nm, for PS without any GO, to 88 nm with 1 wt% GO content. Scanning electron microscopy studies show a uniform size distribution of the composite particles prepared with GO. The dried films show a structural color that varies with the GO content. The self‐assembly behavior of the dried film was further studied using reflectance spectroscopy, which shows a red shift of the reflectance maximum from 440 to 538 nm as the GO loading was increased from 0.2 to 0.5 wt%, respectively, indicating a different microstructure. X‐ray diffraction, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to study the morphology and structure of the composite particles on drying. The AFM study confirms the non‐spherical shape of the particles. Thermogravimetric analysis shows improved thermal decomposition characteristics of the nanocomposite films. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
For the first time the possibility to obtain nanostructures by self‐assembly of chitosan polyampholytic derivative was demonstrated. The self‐assembly of N‐carboxyethylchitosan (CECh) took place only near its isoelectric point (pH 5.0–5.6). Out of the pH range 5.0–5.6, CECh aqueous solutions behaved as real solutions. Dynamic light scattering and atomic force microscopy analyses revealed that spherically shaped or rod/worm‐like nanosized assemblies were formed depending on the polymer molar mass, pH value, and polymer concentration. CECh of two different molar masses was studied in concentrations ranging from 0.01 to 0.1 mg/mL. The structures from CECh of weight‐average molar mass (Mw ) 4.5 × 103 g/mol were spherical regardless the pH and polymer concentration. In contrast, CECh of high molar mass (HMMCECh, Mw = 6.7 × 105 g/mol) formed self‐assemblies with spherical shape only at pH 5.0 and 5.6. At pH 5.2 spherical nanoparticles were obtained only at polymer concentration 0.01 mg/mL. The mean hydrodynamic diameter (Dh) of the obtained nanoparticles was in the range from 30 to 980 nm. On increasing the concentration, aggregation of the nanoparticles appeared, and at HMMCECh concentration 0.1 mg/mL, rod/worm‐like structures were obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6712–6721, 2008  相似文献   

17.
We describe herein the hierarchical self‐assembly of discrete supramolecular metallacycles into ordered fibers or spherical particles through multiple noncovalent interactions. A new series of well‐defined metallacycles decorated with long alkyl chains were obtained through metal–ligand interactions, which were capable of aggregating into ordered fibroid or spherical nanostructures on the surface, mostly driven by hydrophobic interactions. In‐depth studies indicated that the morphology diversity was originated from the structural information encoded in the metallacycles, including the number of alkyl chains and their spatial orientation. Interestingly, the morphology of the metallacycle aggregates could be tuned by changing the solvent polarity. These findings are of special significance since they provide a simple yet highly controllable approach to prepare ordered and tunable nanostructures from small building blocks by means of hierarchical self‐assembly.  相似文献   

18.
Simple self‐assembly techniques to fabricate non‐spherical polymer particles, where surface composition and shape can be tuned through temperature and the choice of non‐solvents was developed. A series of amphiphilic polystyrene‐b‐poly(2‐ethyl‐2‐oxazoline) block copolymers were prepared and through solvent exchange techniques using varying non‐solvent composition a range of non‐spherical particles were formed. Faceted phase separated particles approximately 300 nm in diameter were obtained when self‐assembled from tetrahydrofuran (THF) into water compared with unique large multivesicular particles of 1200 nm size being obtained when assembled from THF into ethanol (EtOH). A range of intermediate structures were also prepared from a three part solvent system THF/water/EtOH. These techniques present new tools to engineer the self‐assembly of non‐spherical polymer particles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 750–757  相似文献   

19.
Novel structural microspheres of the Janus type, with microphase‐separated polystyrene (PS) and poly(tert‐butyl methacrylate) (PBMA) shells and crosslinked poly(2‐vinyl pyridine) (PVP) cores, were synthesized with the crosslinking of PVP spherical domains in poly(styrene‐block‐2‐vinyl pyridine‐blocktert‐butyl methacrylate) ABC triblock terpolymer film with PS/PBMA lamellae–PVP spherical structures. For the formation of lamellae‐sphere structures, toluene, which was a selective solvent for the ABC triblock terpolymer, was used. With the crosslinking of PVP spheres in the microphase‐separated film with 1,4‐diiodobutane gas, the microphase structure of the terpolymer was fixed, and microspheres composed of microphase‐separated PS and PBMA shells and P2VP cores were obtained. The size distribution of the purified microspheres was narrow. The characteristics of the microspheres and their aggregation behaviors in selective solvents were investigated by transmission electron microscopy and light scattering methods. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2091–2097, 2000  相似文献   

20.
A comprehensive study is reported on the effect of salt concentration, polyelectrolyte block length, and polymer concentration on the morphology and structural properties of nanoaggregates self‐assembled from BAB single‐strand DNA (ssDNA) triblock polynucleotides in which A represents polyelectrolyte blocks and B represents hydrophobic neutral blocks. A morphological phase diagram above the gelation point is developed as a function of solvent ionic strength and polyelectrolyte block length utilizing an implicit solvent ionic strength method for dissipative particle dynamics simulations. As the solvent ionic strength increases, the self‐assembled DNA network structures shrinks considerably, leading to a morphological transition from a micellar network to worm‐like or hamburger‐shape aggregates. This study provides insight into the network morphology and its changes by calculating the aggregation number, number of hydrophobic cores, and percentage of bridge chains in the network. The simulation results are corroborated through cryogenic transmission electron microscopy on the example of the self‐assembly of ssDNA triblocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号