首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new kind of magnetic dextran microsphere (MDMS) with uniform shape and narrow diameter distribution has been prepared from magnetic iron nanoparticles and dextran. Horseradish peroxidase (HRP) was successfully immobilized on the surface of an MDMS-modified glassy-carbon electrode (GCE), and the immobilized HRP displayed excellent electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of experimental variables such as the concentration of HQ, solution pH, and the working potential were investigated for optimum analytical performance. This biosensor had a fast response to H2O2 of less than 10 s and an excellent linear relationship was obtained in the concentration range 0.20 μmol L−1–0.68 mmol L−1, with a detection limit of 0.078 μmol L−1 (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant was estimated to be 1.38 mmol L−1. Moreover, the selectivity, stability, and reproducibility of the biosensor were evaluated, with satisfactory results. Figure Amperometric response of the biosensor to successive additions of H2O2 and the plot of amperometric response vs. H2O2 concentration  相似文献   

2.
    
A novel horseradish peroxidase (HRP) electrochemical biosensor based on a MgO nanoparticles (nano‐MgO)‐chitosan (chit) composite matrix was developed. The morphology of nano‐MgO‐chit nanocomposite was examined by scanning electron microscopy (SEM). The interaction between nano‐MgO‐chit nanocomposite matrix and enzyme was characterized with UV‐vis spectra. This proposed composite material combined the advantages of inorganic nanoparticles and organic polymer chit. The HRP immobilized in the nanocomposite matrix displayed excellent electrocatalytic activity to the reduction of H2O2 in the presence of hydroquinone as a mediator. The effects of the experimental variables such as solution pH and the working potential were investigated using steady‐state amperometry. The present biosensor (HRP‐modified electrode) had a fast response towards H2O2 (less than 10 s), and excellent linear relationships were obtained in the concentration range of 0.1–1300 μM, with a detection limit of 0.05 μM (S/N=3). Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

3.
    
A new convenient strategy to fabricate a third‐generation hydrogen peroxide biosensor was described. The screen‐printed carbon electrode (SPCE) was first modified with a layer of 4‐nitrophenyl assembled from the 4‐nitroaniline diazonium salt synthesized in situ in acidic aqueous solution. Next, the nitro groups were converted to amines followed by crosslinking to the horseradish peroxidase (HRP) by glutaraldehyde. The redox chemistry of the active center of the HRP was observed and the HRP‐modified electrode displayed electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediators. H2O2 was determined in a linear range from 5.0 μM to 50.0 μM, with a detection limit of 1.0 μM. Furthermore, the biosensor exhibited fast amperometric response, good reproducibility and long‐term stability.  相似文献   

4.
Feng Li 《Talanta》2009,77(4):1304-1308
A simple and reliable one-pot approach was established for the development of a novel hydrogen peroxide (H2O2) biosensor based on in situ covalent immobilization of horseradish peroxidase (HRP) into biocompatible material through polysaccharide-incorporated sol-gel process. Siloxane with epoxide ring and trimethoxy anchor groups was applied as the bifunctional cross-linker and the inorganic resource for organic-inorganic hybridization. The reactivity between amine groups and epoxy groups allowed the covalent incorporation of HRP and the functional biopolymer, chitosan (CS) into the inorganic polysiloxane network. Some experimental variables, such as mass ratio of siloxane to CS, pH of measuring solution and applied potential for detection were optimized. HRP covalently immobilized in the hybrid matrix possessed high electrocatalytic activity to H2O2 and provided a fast amperometric response. The linear response of the as-prepared biosensor for the determination of H2O2 ranged from 2.0 × 10−7 to 4.6 × 10−5 mol l−1 with a detection limit of 8.1 × 10−8 mol l−1. The apparent Michaelis-Menten constant was determined to be 45.18 μmol l−1. Performance of the biosensor was also evaluated with respect to possible interferences. The fabricated biosensor exhibited high reproducibility and storage stability. The ease of the one-pot covalent immobilization and the biocompatible hybrid matrix serve as a versatile platform for enzyme immobilization and biosensor fabricating.  相似文献   

5.
    
A novel enzyme immobilization technique based on thionine‐bovine serum albumin conjugate (Th‐BSA) and gold colloidal nanoparticles (nano‐Au) was developed. Thionine was covalently bound onto the BSA film with glutaraldehyde(GA) as cross‐linker to achieve Th‐BSA conjugate. The free amino groups of thionine were then used to attach nano‐Au for the immobilization of horseradish peroxidase (HRP). Such nano‐Au/Th‐BSA matrix shows a favorable microenvironment for retaining the native activity of the immobilized HRP and thionine immobilized in this way can effectively shuttle electrons between the electrode and the enzyme. The proposed biosensor displays excellent catalytic activity and rapid response for H2O2. The linear range for the determination of H2O2 is from 4.9×10?7 to 1.6×10?3 M with a detection limit of 2.1×10?7 M at 3σ and a Michaelies‐Menten constant K value of 0.023 mM.  相似文献   

6.
The detection of hydrogen peroxide is detailed using horseradish peroxidase and anthraquinone. Both species are immobilized on a glassy carbon electrode substrate. This dual immobilization gives rise to lower detection limits compared with the situation when either of the species is immobilized. Detection limits of 40 nM are reported within physiologically-relevant media.  相似文献   

7.
    
Based on the immobilization of horseradish peroxidase (HRP) in chitosan(CS) on a glassy carbon electrode (GCE) modified with the Au‐Pt alloy nanoparticles (NPs) / polyaniline nanotube (nanoPAN) nanocomposite film, a novel hydrogen peroxide biosensor was constructed. The modified processes of GCE were monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Au‐PtNPs/nanoPAN/CS had a better synergistic electrochemical effect than did AuNPs/nanoPAN/CS or PtNPs/nanoPAN/CS. The amperometric response of the biosensor towards H2O2 was investigated by successively adding aliquots of H2O2 to a continuous stirring phosphate buffer solution under the optimized conditions. Because Au‐PtNPs have unique catalytic properties and good biocompatibility, and especially Au‐PtNPs and nanoPAN have synergistic augmentation for facilitating electron‐transfer, the biosensor displayed a fast response time (<2 s) and broad linear response to H2O2 in the range from 1.0 to 2200 μmol L?1 with a relatively low detection limit of 0.5 μmol L?1 at 3 times the background noise. Moreover, the biosensor can be applied in practical analysis and exhibited high sensitivity, good reproducibility, and long‐term stability.  相似文献   

8.
    
A sensitive hydrogen peroxide sensor based on horseradish peroxidase covalently attached to layered nonoriented MWNTs modified electrode is presented. Cyclic voltammetry results gave quasi‐reversible FeIII/FeII voltammetry. The electron transfer rate constant (ks) and Michaelis–Menten constant (KM) in pH 7 is 48.8±0.9 s?1 and 0.13±0.05 mM respectively. A linear calibration curve for hydrogen peroxide was obtained up to 120 nM under the optimized conditions with a remarkable detection limit of (S/N=3) 1.5 nM. Results suggest that the nonoriented nanotubes act as electrical conductors and may also provide large surface area facilitating facile electron transfer and excellent electrochemical catalysis.  相似文献   

9.
A sequential injection lab-on valve (SI-LOV) method for the enzymatic determination of hydrogen peroxide was developed. The spectrophotometric assay is based on the reaction between hydrogen peroxide and ABTS (2,2′-Azino-bis(3-Ethylbenzothiazoline 6-sulfonic acid)) in the presence of the enzyme HRP (horseradish peroxidase). The produced oxidized ABTS is measured at 410 nm. The sample consumption was 15 µL/assay and the consumption of HRP and ABTS was 34.6 mg L− 1 and 0.06 g L− 1, respectively with a determination rate of 45 h− 1.Relative deviations lower than 9.0% were found when the results were compared to those obtained by the reference procedure in the analysis of bleaches and disinfection solutions for contact lenses. With the incorporation of an in-line dilution (dialysis) process, was possible to attain a response range up to 342 mg L− 1 of hydrogen peroxide. The developed method was applied to monitor on-line of the disinfection–neutralization process of contact lenses. The study of two different one-step systems for cleaning contact lenses demonstrated that the neutralization of the hydrogen peroxide is completed within 6 h as recommended by the manufactures. The developed flow method was proved to be a useful tool for monitoring the dynamic process of disinfection–neutralization.  相似文献   

10.
在pH 4.8 的乙酸盐缓冲溶液中, 邻苯二胺(OPD)形成粒径约380 nm的微粒, 在392, 420, 445, 484和507 nm处有5个较强的Rayleigh散射峰. 辣根过氧化酶(HRP)催化H2O2氧化邻苯二胺生成黄色的2,3-二氨基吩嗪产物, 反应体系在420, 445和484 nm处的Rayleigh散射光信号显著减弱. 在最佳条件下, HRP浓度在8.3×10-12~4.17×10-10 g/mL范围内均与445和484 nm处的Rayleigh散射强度的降低值呈线性关系, 其回归方程、相关系数、检出限(3σ)分别为ΔI445 nm=2.23c+11, ΔI484 nm=1.47c+4.8; 0.9982, 0.9919; 3.6×10-12 g/mL HRP和5.4×10-12 g/mL HRP. 该法用于辣根过氧化酶(HRP)的测定, 结果满意.  相似文献   

11.
石墨烯-聚多巴胺纳米复合材料制备过氧化氢生物传感器   总被引:9,自引:0,他引:9  
通过合成具有仿生功能的石墨烯-聚多巴胺纳米材料,将其与辣根过氧化酶组装到电极表面,以对苯二酚为电子媒介体制备H2O2传感器.此修饰电极对H2O2具有良好的电催化活性,检测的线性范围为5.0×10-7~3.3×10-4 mol/L;线性回归方程为Y=29.69x+ 0.04577,相关系数为R=0.9995;检出限为3.7×10-7 mol/L(S/N=3).  相似文献   

12.
    
A novel method to fabricate a third‐generation hydrogen peroxide biosensor was reported. The electrode was first derivatized by electrochemical reduction of in situ generated 4‐carboxyphenyl diazonium salt (4‐CPDS) in acidic aqueous solution yielded stable 4‐carboxyphenyl (4‐CP) layer. The horseradish peroxidase (HRP) enzyme was then covalently immobilized by amidation between NH2 terminus of enzyme and COOH terminus of 4‐CP film making use of the carbodiimide chemistry. Electrodeposition conditions used to control electrode functionalization density and film electron transfer kinetics were assessed by chronoamperometry and electrochemical impedance spectroscopy. The immobilized HRP displayed excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediators. The effect of various operational parameters was explored for optimum analytical performance. The reported biosensor exhibited fast amperometric response (within 5 s) to H2O2. The detection limit of the biosensor was 5 μM, and linear range was from 20 μM to 20 mM. Furthermore, the biosensor exhibited high sensitivity, good reproducibility, and long‐term stability.  相似文献   

13.
We report on a voltammetric sensor for the detection of total cholesterol. The sensor was fabricated by co-immobilization of two enzymes: cholesterol oxidase (ChOx) and horseradish peroxidase (HRP) on porous graphite. The electrochemical behavior of the sensor was studied with the use of linear sweep voltammetry. It has been shown that the sensor has high stability and high sensitivity (16 μA mM−1 cm−2). The biosensor exhibited a wide linear range up to 300 mol/dm3 in a condition close to physiological (pH=6.86). Besides, the interferences of some key analytes containing in the blood were studied. As a matter of fact, making a fabricated sensor is rather promising for using in clinical practice.  相似文献   

14.
将天然高分子壳聚糖(CS)包裹碳包铁的磁性纳米微球(CFN/CS)修饰于玻碳电极表面,并利用戊二醛将血红蛋白(Hb)交联在CFN/CS上,制备了Hb-CFN/CS-GC电极。循环伏安法和电化学交流阻抗法实验结果表明,Hb在CFN/CS-GC电极表面仍保持较好的生物活性,能稳定有效地进行直接电子转移反应。电化学研究表明该修饰电极对H2O2有良好的电催化还原作用,在pH 7.0的磷酸盐(PBS)介质中,H2O2在5.2×10-5~2.3×10-3mol/L浓度范围内,其浓度与还原峰电流呈良好线性关系,检出限为8.7×10-6mol/L。该修饰电极有着良好的重现性和稳定性。  相似文献   

15.
A biosensor with improved performance was developed through the immobilization of horseradish peroxidase (HRP) onto electropolymerized polyaniline (PANI) films doped with carbon nanotubes (CNTs). The effects of electropolymerization cycle and CNT concentration on the response of the biosensor toward H2O2 were investigated. It was found that the application of CNTs in the biosensor system could increase the amount and stability of the immobilized enzyme, and greatly enhanced the biosensor response. Compared with the biosensor without CNTs, the proposed biosensor exhibited enhanced stability and approximately eight-fold sensitivity. A linear range from 0.2 to 19 μM for the detection of H2O2 was observed for the proposed biosensor, with a detection limit of 68 nM at a signal-to-noise ratio of 3 and a response time of less than 5 s.  相似文献   

16.
《Electroanalysis》2006,18(23):2324-2330
A tailor‐made horseradish peroxidase (HRP) bulk composite electrode was developed on the basis of pyrolyzed cobalt tetramethoxyphenylporphyrin (CoTMPP) by modifying pore size and surface area of the porous carbon material through varying amounts of iron oxalate and sulfur prior to pyrolyzation. The materials were used to immobilize horseradish peroxidase (HRP). These electrodes were characterized in terms of their efficiency to reduce hydrogen peroxide. The heterogeneous electron transfer rate constants of different materials were determined with the rotating disk electrode method and a kS (401±61 s?1) exceeding previously reported values for native HRP was found.  相似文献   

17.
    
A novel hydrogen peroxide biosensor has been fabricated based on covalently linked horseradish peroxidase (HRP) onto L- glutathione self-assembled monolayers (SAMs). The SAMs-based electrode was characterized by electrochemical methods, and direct electrochemistry of HRP can be achieved with formal potential of-0.242 V (vs. saturated Ag/AgCl) in pH 7 phosphate buffer solution (PBS), the redox peak current is linear to scan rate and rate constant can be calculated to be 0.042 s^-1. The HRP-SAMs- based biosensors show its better electrocatalysis to hydrogen peroxide in the concentration range of 1 × 10^-6 mol/L to 1.2 × 10^-3 mol/L with a detection limit of 4 × 10^-7 mol/L. The apparent Michealis-Menten constant is 3.12 mmol/L. The biosensor can effectively eliminate the interferences of dopamine, ascorbic acid, uric acid, catechol and p-acetaminophen.  相似文献   

18.
以隐性亮绿 (RBG)为氢供体底物 ,研究了辣根过氧化物酶 -H2 O2 -RBG显色反应体系的酶催化特性。在 p H 5.0~ 6.0的条件下反应形成的酶催化产物亮绿 (BG)于 63 0 .6nm处有最大吸收 ,该显色反应测定 H2 O2 的表观摩尔吸光系数为 5.64×1 0 4 L·mol- 1·cm- 1,线性范围为 3 .55× 1 0 - 8~ 6.0× 1 0 - 6 mol/ L,检出限为 3 .55×1 0 - 8mol/ L。方法用于雨水中痕量 H2 O2 的测定 ,结果满意  相似文献   

19.
基于等离子体聚合膜固定酶的H2O2生物传感器   总被引:3,自引:0,他引:3  
以玻碳电极为基础电极,用微波等离子体技术聚合沉积聚乙二胺等离子体膜,使之形成带氨基功能团的表面,再通过戊二醛交联共价固定辣根过氧化物酶,制得H2O2生物传感器.探讨了等离子体聚合膜的形成条件(如放电功率、单体流速、单体气压和聚合时间),讨论了工作电位、介体浓度和pH值对传感器响应的影响.此外,用红外光谱对等离子体聚合膜进行了表征.该传感器在5×10-7~1.1×10-3mol/LH2O2浓度范围内有线性响应,最低检测限为0.3μmol/L.将此传感器用于实际试样回收率的测定,结果良好.  相似文献   

20.
A new hydrogen peroxide biosensor was constructed, which consisted of a platinum electrode modified by a matrix of polyvinyl butyral (PVB) and nanometer-sized Ag colloid containing immobilized horseradish peroxidase (HRP), and using Co(bpy)33+ as mediator in the hydrogen peroxide solution. The electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The modified process was characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The HRP immobilized on colloidal Ag was stable and retained its biological activity. The sensor displays excellent electrocatalytic response to the reduction of H2O2. Analytical parameters such as pH and temperature were also studied. Linear calibration for H2O2 was obtained in the range of 1×10–5 to 1×10–2 M under optimized conditions. The sensor was highly sensitive to H2O2, with a detection limit of 2×10–6 M, and the sensor achieved 95% of steady-state current within 10 s. The sensor exhibited high sensitivity, selectivity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号