共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chemphyschem》2003,4(5):445-456
The dissociation dynamics of trans‐azomethane upon excitation to the S1(n,π*) state with a total energy of 93 kcal mol?1 is investigated using femtosecond‐resolved mass spectrometry in a molecular beam. The transient signal shows an opposite pump–probe excitation feature for the UV (307 nm) and the visible (615 nm) pulses at the perpendicular polarization in comparison with the signal obtained at the parallel polarization: The one‐photon symmetry‐forbidden process excited by the UV pulse is dominant at the perpendicular polarization, whereas the two‐photon symmetry‐allowed process initiated by the visible pulse prevails at the parallel polarization. At the perpendicular polarization, we found that the two C? N bonds of the molecule break in a stepwise manner, that is, the first C? N bond breaks in ≈70 fs followed by the second one in ≈100 fs, with the intermediate characterized. At the parallel polarization, the first C? N bond cleavage was found to occur in 100 fs with the intensity of the symmetry‐allowed transition being one order of magnitude greater than the intensity of the symmetry‐forbidden transition at the perpendicular polarization. Theoretical calculations using time‐dependent density functional theory (TDDFT) and the complete active space self‐consistent field (CASSCF) method have been carried out to characterize the potential energy surface for the ground state, the low‐lying excited states, and the cationic ground state at various levels of theory. Combining the experimental and theoretical results, we identified the elementary steps in the mechanism: The initial driving force of the ultrafast bond‐breaking process of trans‐azomethane (at the perpendicular polarization) is due to the CNNC torsional motion initiated by the vibronic coupling through an intensity‐borrowing mechanism for the symmetry‐forbidden n–π* transition. Following this torsional motion and the associated molecular symmetry breaking, an S0/S1 conical intersection (CI) can be reached at a torsional angle of 93.1° (predicted at the CASSCF(8,7)/cc‐pVDZ level of theory). Funneling through the S0/S1 CI could activate the asymmetric C? N stretching motion, which is the key motion for the consecutive C? N bond breakages on the femtosecond time scale. 相似文献
2.
Using mixed quantum–classical dynamics, the lowest part of the UV absorption spectrum and the first deactivation steps of keto‐cytosine have been investigated. The spectrum shows several strong peaks, which mainly come from the S1 and S2 states, with minor contributions from the S3. The semiclassical trajectories, launched from these three states, clearly indicate that at least four states are involved in the relaxation of keto‐cytosine to the ground state. Non‐adiabatic transfer between the ππ* and nπ* excited states and deactivation via three‐state conical intersections is observed in the very early stage of the dynamics. In less than 100 fs, a large amount of population is deactivated to the ground state via several mechanisms; some population remains trapped in the S2 state. The latter two events can be connected to the fs and ps transients observed experimentally. 相似文献
3.
Christer Z. Bisgaard Dr. Helmut Satzger Dr. Susanne Ullrich Dr. Albert Stolow Dr. 《Chemphyschem》2009,10(1):101-110
We present a summary of recent advances in the understanding of the UV photophysics of the isolated DNA base adenine, emphasizing a discussion of the mechanisms behind the ultrafast relaxation following excitation to the ππ* band. Drawing on our femtosecond time‐resolved photoelectron spectroscopy experiments, we discuss differences in the ultrafast relaxation of adenine and 9‐methyladenine and consider the relative merits of the various proposed mechanisms. 相似文献
4.
Jen‐Shyang Ni Xun Zhang Guang Yang Tianyi Kang Xiangwei Lin Menglei Zha Yaxi Li Lidai Wang Kai Li 《Angewandte Chemie (International ed. in English)》2020,59(28):11298-11302
It remains highly challenging to identify small molecule‐based photothermal agents with a high photothermal conversion efficiency (PTCE). Herein, we adopt a double bond‐based molecular motor concept to develop a new class of small photothermal agents to break the current design bottleneck. As the double‐bond is twisted by strong twisted intramolecular charge transfer (TICT) upon irradiation, the excited agents can deactivate non‐radiatively through the conical intersection (CI) of internal conversion, which is called photoinduced nonadiabatic decay. Such agents possess a high PTCE of 90.0 %, facilitating low‐temperature photothermal therapy in the presence of a heat shock protein 70 inhibitor. In addition, the behavior and mechanism of NIR laser‐triggered molecular motions for generating heat through the CI pathway have been further understood through theoretical and experimental evidence, providing a design principle for highly efficient photothermal and photoacoustic agents. 相似文献
5.
6.
Juan Manuel Ortiz‐Sánchez Ricard Gelabert Dr. Miquel Moreno Dr. José M. Lluch Prof. 《Chemphyschem》2008,9(14):2068-2076
The two isoelectronic bipyridyl derivatives [2,2′‐bipyridyl]‐3,3′‐diamine and [2,2′‐bipyridyl]‐3,3′‐diol are experimentally known to undergo very different excited‐state double‐proton‐transfer processes, which result in fluorescence quantum yields that differ by four orders of magnitude. In a previous study, these differences were explained from a theoretical point of view, because of topographical features in the potential energy surface and the presence of conical intersections (CIs). Here, we analyze the photochemical properties of a new molecule, [2,2′‐bipyridyl]‐3‐amine‐3′‐ol [BP(OH)(NH2)], which is, in fact, a hybrid of the former two. Our density functional theory (DFT), time‐dependent DFT (TDDFT), and complete active space self‐consistent field (CASSCF) calculations indicate that the double‐proton‐transfer process in the ground and first singlet π→π* excited state in BP(OH)(NH2) presents features that are between those of their “parents”. The presence of two CIs and the role they may play in the actual photochemistry of BP(OH)(NH2) and other bipyridyl derivatives are also discussed. 相似文献
7.
Dr. Mahesh Gudem Dr. Markus Kowalewski 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(40):e202200781
Triplet-triplet annihilation (TTA) is a spin-allowed conversion of two triplet states into one singlet excited state, which provides an efficient route to generate a photon of higher frequency than the incident light. Multiple energy transfer steps between absorbing (sensitizer) and emitting (annihilator) molecular species are involved in the TTA based photon upconversion process. TTA compounds have recently been studied for solar energy applications, even though the maximum upconversion efficiency of 50 % is yet to be achieved. With the aid of quantum calculations and based on a few key requirements, several design principles have been established to develop the well-functioning annihilators. However, a complete molecular level understanding of triplet fusion dynamics is still missing. In this work, we have employed multi-reference electronic structure methods along with quantum dynamics to obtain a detailed and fundamental understanding of TTA mechanism in naphthalene. Our results suggest that the TTA process in naphthalene is mediated by conical intersections. In addition, we have explored the triplet fusion dynamics under the influence of strong light-matter coupling and found an increase of the TTA based upconversion efficiency. 相似文献
8.
Prof. Jen-Shyang Ni Xun Zhang Dr. Guang Yang Dr. Tianyi Kang Dr. Xiangwei Lin Menglei Zha Yaxi Li Prof. Lidai Wang Prof. Kai Li 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(28):11394-11398
It remains highly challenging to identify small molecule-based photothermal agents with a high photothermal conversion efficiency (PTCE). Herein, we adopt a double bond-based molecular motor concept to develop a new class of small photothermal agents to break the current design bottleneck. As the double-bond is twisted by strong twisted intramolecular charge transfer (TICT) upon irradiation, the excited agents can deactivate non-radiatively through the conical intersection (CI) of internal conversion, which is called photoinduced nonadiabatic decay. Such agents possess a high PTCE of 90.0 %, facilitating low-temperature photothermal therapy in the presence of a heat shock protein 70 inhibitor. In addition, the behavior and mechanism of NIR laser-triggered molecular motions for generating heat through the CI pathway have been further understood through theoretical and experimental evidence, providing a design principle for highly efficient photothermal and photoacoustic agents. 相似文献
9.
10.
Hideyuki Tatsuno Kasper S. Kjr Kristjan Kunnus Tobias C. B. Harlang Cornelia Timm Meiyuan Guo Pavel Chbera Lisa A. Fredin Robert W. Hartsock Marco E. Reinhard Sergey Koroidov Lin Li Amy A. Cordones Olga Gordivska Om Prakash Yizhu Liu Mads G. Laursen Elisa Biasin Frederik B. Hansen Peter Vester Morten Christensen Kristoffer Haldrup Zoltn Nmeth Dorottya Srosin Szemes va Bajnczi Gyrgy Vank Tim B. Van Driel Roberto Alonso‐Mori James M. Glownia Silke Nelson Marcin Sikorski Henrik T. Lemke Dimosthenis Sokaras Sophie E. Canton Asmus O. Dohn Klaus B. Mller Martin M. Nielsen Kelly J. Gaffney Kenneth Wrnmark Villy Sundstrm Petter Persson Jens Uhlig 《Angewandte Chemie (International ed. in English)》2020,59(1):364-372
Iron N‐heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub‐ps X‐ray spectroscopy study of an FeIINHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3MLCT state, from the initially excited 1MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3MC state, in competition with vibrational relaxation and cooling to the relaxed 3MLCT state. The relaxed 3MLCT state then decays much more slowly (7.6 ps) to the 3MC state. The 3MC state is rapidly (2.2 ps) deactivated to the ground state. The 5MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition‐metal complexes for similar ultrafast decays to optimize photochemical performance. 相似文献
11.
Excited-state potential energy surfaces of adenine, protonated adenine, and their N9-methylated analogs are explored by means of a complete active space (CAS) and time-dependent density functional theory (TD-DFT) study to understand the dynamics associated with internal conversion. After photoexcitation of the ground-state molecules to the S(1) state, the nuclear motions that are responsible for taking the wavepacket out of the Franck-Condon region are either an H--N9/C--N9 stretch or a ring-puckering motion that leads to pyramidalization. These motions lead to accessible conical intersections with the ground-state surface. The results are used to successfully interpret previous measurements on the photodissociation of adenosine 5'-monophosphate nucleotide anions and cations, where the latter react in a highly nonstatistical manner. 相似文献
12.
13.
Microhydration Effects on the Ultrafast Photodynamics of Cytosine: Evidences for a Possible Hydration‐Site Dependence 下载免费PDF全文
Dr. Jr‐Wei Ho Hung‐Chien Yen Hui‐Qi Shi Li‐Hao Cheng Chih‐Nan Weng Wei‐Kuang Chou Dr. Chih‐Chung Chiu Prof. Po‐Yuan Cheng 《Angewandte Chemie (International ed. in English)》2015,54(49):14772-14776
Ultrafast excited‐state deactivation dynamics of small cytosine (Cy) and 1‐methylcytosine (1mCy) microhydrates, Cy?(H2O)1‐3 and 1mCy?(H2O)1,2, produced in a supersonic expansion have been studied by mass‐selected femtosecond pump–probe photoionization spectroscopy at about 267 nm excitation. The seeded supersonic expansion of Ar/H2O gas mixtures allowed an extensive structural relaxation of Cy and 1mCy microhydrates to low‐energy isomers. With the aid of electronic structure calculations, we assigned the observed ultrafast dynamics to the dominant microhydrate isomers of the amino‐keto tautomer of Cy and 1mCy. Excited‐state lifetimes of Cy?(H2O)1‐3 measured here are 0.2–0.5 ps. Comparisons of the Cy?H2O and 1mCy?H2O transients suggest that monohydration at the amino Watson–Crick site induces a substantially stronger effect than at the sugar‐edge site in accelerating excited‐state deactivation of Cy. 相似文献
14.
15.
James A. Green Martha Yaghoubi Jouybari Daniel Aranda Roberto Improta Fabrizio Santoro 《Molecules (Basel, Switzerland)》2021,26(6)
We have recently proposed a protocol for Quantum Dynamics (QD) calculations, which is based on a parameterisation of Linear Vibronic Coupling (LVC) Hamiltonians with Time Dependent (TD) Density Functional Theory (TD-DFT), and exploits the latest developments in multiconfigurational TD-Hartree methods for an effective wave packet propagation. In this contribution we explore the potentialities of this approach to compute nonadiabatic vibronic spectra and ultrafast dynamics, by applying it to the five nucleobases present in DNA and RNA. For all of them we computed the absorption spectra and the dynamics of ultrafast internal conversion (100 fs timescale), fully coupling the first 2–3 bright states and all the close by dark states, for a total of 6–9 states, and including all the normal coordinates. We adopted two different functionals, CAM-B3LYP and PBE0, and tested the effect of the basis set. Computed spectra are in good agreement with the available experimental data, remarkably improving over pure electronic computations, but also with respect to vibronic spectra obtained neglecting inter-state couplings. Our QD simulations indicate an effective population transfer from the lowest energy bright excited states to the close-lying dark excited states for uracil, thymine and adenine. Dynamics from higher-energy states show an ultrafast depopulation toward the more stable ones. The proposed protocol is sufficiently general and automatic to promise to become useful for widespread applications. 相似文献
16.
Photoisomerization of Arylazopyrazole Photoswitches: Stereospecific Excited‐State Relaxation 下载免费PDF全文
Dr. Ya‐Ting Wang Dr. Xiang‐Yang Liu Prof. Dr. Ganglong Cui Prof. Dr. Wei‐Hai Fang Prof. Dr. Walter Thiel 《Angewandte Chemie (International ed. in English)》2016,55(45):14009-14013
Electronic structure calculations and nonadiabatic dynamics simulations (more than 2000 trajectories) are used to explore the Z–E photoisomerization mechanism and excited‐state decay dynamics of two arylazopyrazole photoswitches. Two chiral S1/S0 conical intersections with associated enantiomeric S1 relaxation paths that are barrierless and efficient (timescale of ca. 50 fs) were found. For the parent arylazopyrazole (Z8) both paths contribute evenly to the S1 excited‐state decay, whereas for the dimethyl derivative (Z11) each of the two chiral cis minima decays almost exclusively through one specific enantiomeric S1 relaxation path. To our knowledge, the Z11 arylazopyrazole is thus the first example for nearly stereospecific unidirectional excited‐state relaxation. 相似文献
17.
18.
Dr. Julien Briand Dr. Stefania Fusi Dr. Riccardo Rossi Paccani Prof. Massimo Olivucci Prof. Stefan Haacke 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(48):15296-15304
The coherent photoisomerization of a chromophore in condensed phase is a rare process in which light energy is funneled into specific molecular vibrations during electronic relaxation from the excited to the ground state. In this work, we employed ultrafast spectroscopy and computational methods to investigate the molecular origin of the coherent motion accompanying the photoisomerization of indanylidene–pyrroline (IP) molecular switches. UV/Vis femtosecond transient absorption gave evidence for an excited‐ and ground‐state vibrational wave packet, which appears as a general feature of the IP compounds investigated. In close resemblance to the coherent photoisomerization of rhodopsin, the sudden onset of a far‐red‐detuned and rapidly blue‐shifting photoproduct signature indicated that the population arriving on the electronic ground state after nonadiabatic decay through the conical intersection (CI) is still very focused in the form of a vibrational wave packet. Semiclassical trajectories were employed to investigate the reaction mechanism. Their analysis showed that coupled double‐bond twisting and ring inversions, already populated during the excited‐state reactive motion, induced periodic changes in π‐conjugation that modulate the ground‐state absorption after the non‐adiabatic decay. This prediction further supports that the observed ground‐state oscillation results from the reactive motion, which is in line with a biomimetic, coherent photoisomerization scenario. The IP compounds thus appear as a model system to investigate the mechanism of mode‐selective photomechanical energy transduction. The presented mechanism opens new perspectives for energy transduction at the molecular level, with applications to the design of efficient molecular devices. 相似文献
19.