首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The surface fluorination of polycarbonate bisphenol‐A thin films was carried out by treatment with plasma of sulfur hexafluoride/argon (SF6/Ar) using a radio frequency (RF) discharges. Effects of treatment time and SF6 concentration have been studied. Surface characterization was performed using X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy with attenuated total reflectance (FT‐IR/ATR), atomic force microscopy (AFM) and contact angle measurements. The effects of the surface modification on the carbon dioxide (CO2) gas permeation of the fluorinated films were evaluated. The results showed effective fluorination of all samples, with C‐F, C‐F2 and even C‐F3 groups attached to the polycarbonate, depending on the treatment conditions. The presence of incorporated fluorine molecules absorbed into the polymer structure during treatment was also shown. The polymer films showed an increase of their surface roughness and a decrease in their surface tension due to the plasma treatment. Plasma fluorination also decreases polycarbonate CO2 permeability considerably. The films treated with the lower concentration of SF6 showed the highest barrier values; however, significant differences between the permeability values for the samples treated for different times were not observed.  相似文献   

2.
Committing stone protection to polymeric materials started in the sixties but the study and knowledge of the complex and multiple interactions between stone and polymers has only been carried out recently. Its important to note that, together with the factors related to the polymeric system itself, intrinsic properties of the stone substrate, like composition, porosity, and crystalline characteristics, play a relevant role. In this paper the issues related to protection of three different Italian marbles have been investigated: Candoglia marble, employed in the building of the Milan Cathedral, Carrara marble, widely used in sculpture and historical architecture, and S. Giuliano marble, used in the building of the Pisa Cathedral and its famous leaning tower. Specimens coming from blocks of the three quarried stones have been characterized, treated with two new partially fluorinated acrylic copolymers, 2,2,2-trifluoroethyl methacrylate/methyl acrylate (TFEMA/MA), and trifluoromethyl-2,2,2-trifluorethyl methacrylate/methyl acrylate (HFIMA/MA), and tested according to UNI-Normal Italian protocol. All the measurements including capillary water absorption, static contact angles, colour variation, water vapour permeability, and SEM morphological analysis have been carried out before and after the polymeric treatment. The aim of this work is to evaluate the protective efficacy of these two new partially fluorinated acrylic copolymers on the three different marbles, and to correlate the different behaviours with the polymers properties and with the stone substrates characteristics. PACS 61.41.+e; 81.05.Lg; 68.08.de; 68.60.wm  相似文献   

3.
《Composite Interfaces》2013,20(1):65-79
Calcium carbonate has been modified with three surface modifying systems based upon stearic acid, acrylic acid and a reactive coating comprising acrylic acid with dicumyl peroxide through dry blending. Polypropylene homopolymer was compounded with the coated and uncoated fillers (0 to 65 wt%) through twin screw extrusion. Infrared and extraction investigations showed that the acrylic acid coatings reacted extensively with the filler surface to produce both tightly bound and loosely bound calcium acrylate. Direct evidence for transfer grafting between the calcium acrylate and the polypropylene in the reactive coating was obtained through selective dissolution of the matrix phase and filler with hot xylene and dilute hydrochloric acid, respectively. For coatings without peroxide, complete dissolution of the compound into the inorganic and organic phases was possible, whilst for those with peroxide, an insoluble fraction was obtained. Infrared analysis showed that this was a grafted structure comprising calcium carbonate and polymer. For the filler coating containing acrylic acid with peroxide it was found that the amount of bound polymer at the filler surface was higher for compounds with larger filler loadings indicating a commensurate increase in the extent of the reaction at the filler surface for compounds with higher filler loadings.  相似文献   

4.
The effects of H‐plasma treatment on the electroluminescence (EL) of ZnO‐based light‐emitting diodes have been investigated systematically. After H‐plasma treatment, the EL intensity of the n‐ZnO/AlN/p‐GaN device is observed to be three times stronger than its as‐grown counterpart under the same injection current, and the threshold voltage of the device is significantly reduced simultaneously. The increases in electron concentration and mobility of the ZnO layer resulting from the incorporation of hydrogen atoms into ZnO are considered to be responsible for the improved performance of the ZnO‐based light‐emitting diodes. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The richly functionalized basal plane bonded to polar organic moieties makes graphene oxide (GO) innately hydrophilic. Here, a methodology to synthesize fluorinated graphene oxide by oxidizing the basal plane of fluorinated graphite, allowing for tunable hydrophobicity of GO, is reported. Fluorine exists as tertiary alkyl fluorides covalently bonded to graphitic carbons, and using magic‐angle spinning (MAS) 13C NMR as a primary tool chemical structures for the two types of synthesized fluorinated graphene oxides (FGOs) with significantly different fluorine contents are proposed. The low surface energy of the C–F bond drastically affects GO's wetting behavior, leading to amphiphobicity in its highly fluorinated form. Ease of solution processing enables the fabrication of inks that are spray‐painted on various porous/non‐porous substrates. These coatings maintain amphiphobicity for solvents with surface tensions down to 59 dyn/cm, thus bypassing existing lithographic means to create similar surfaces. The approach towards fluorinating GO and fabricating graphene‐based surfaces with tunable wettability opens the path towards unique, accessible, carbon‐based amphiphobic coatings.  相似文献   

6.
The plasma parameters such as electron density, effective electron temperature, plasma potential, and uniformity are investigated in a new dual‐frequency cylindrical inductively coupled plasma (ICP) source operating at two frequencies (2 and 13.56 MHz) and two antennas (a two‐turn high‐frequency antenna and a six‐turn low‐frequency (LF) antenna). It is found that the electron density increases with 2 MHz power, whereas the electron temperature and plasma potential decrease with 2 MHz power at a fixed 13.56 MHz power. Moreover, the plasma uniformity can be improved by adjusting the LF power. These results indicate that a dual‐frequency synergistic discharge in a cylindrical ICP can produce a high‐density, low‐potential, low‐effective‐electron‐temperature, and uniform plasma.  相似文献   

7.
Based on numerical calculations a new method has been developed, which enables plasma analysis from the average value of the Langmuir probe current measured in pulsed discharge. The application of this method for characterization of a planar reactor used for plasma enhanced chemical vapor deposition of TiN and (TiAl)N hard coatings is described as an example. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The effect of heat treatment on the corrosion behavior of reactive plasma sprayed TiN coatings in simulated seawater was investigated by electrochemical methods such as the corrosion potential-time curve (Ecorr − t), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and SEM, etc. The results showed that the corrosion potential of TiN coatings increased after heat treatment; the corrosion current of the TiN coatings after heat treatment (be hereafter referred to as HT-TiN) was 13.3% of the untreated coatings (be hereafter referred to as UT-TiN), and the polarization resistance of HT-TiN was 20 times of UT-TiN, which indicated that the heat treatment had significantly increased the corrosion resistance of the coatings. The corrosion behavior of the coatings was mainly local corrosion, and the local corrosion behavior mainly took place at the microdefects (crack and pores) of the coatings. The porosity of the coatings was reduced after heat treatment. The reason was that TiN reacted with O2 to form TiO2 and Ti3O during the heat treating, and volume expansion took place, which led to denser microstructure. The corrosion resistance of the coatings was therefore increased.  相似文献   

9.
Diamond-like carbon (DLC) films can be used in a numerous industrial applications, including biomedical coatings with bactericidal properties. It has been demonstrated that DLC surface can be modified with oxygen plasma treatment. The purpose of this paper is to study the wettability and bactericidal activity of oxygen plasma-treated DLC films produced by plasma enhanced chemical vapor deposition technique. The sp3/sp2 ratio increased after the treatment due to the increase in the generation of the unstable carbon bonds caused by the energetic ions, especially O-H group. The treated DLC surface becomes superhydrophilic and rougher, although the roughness values are still lower. DLC antibacterial activity did not increased with plasma treatment. Therefore, oxygen plasma treatment can be used to make superhydrophilic DLC but not to increase its bactericidal properties.  相似文献   

10.
利用磷酸和双酚A环氧树脂反应得到功能性缓蚀剂羟基环氧磷酸酯(HEP). 将其添加到水性羟基丙烯酸树脂中,再与水性异氰酸酯固化剂交联,制备了水性羟基环氧磷酸酯/丙烯酸聚氨酯复合涂层(HEP-APU). 由于磷酸酯基团可以与金属基体发生反应,在金属表面形成一层磷化膜,极大的提升了金属的抗闪蚀能力. 利用电化学阻抗谱和极化曲线研究HEP-APU复合涂层对Q235碳钢在3.5wt% NaCl溶液中耐蚀性能. 结果表明,HEP-APU涂料对Q235碳钢具有优越的钝化和耐腐性能,且当HEP在水性丙烯酸聚氨酯涂料中质量分数为0.5%时,所得到的复合涂层的防腐性能最佳.  相似文献   

11.
The interparticle spacing of carboxyl functionalized gold nanoparticles (Au–COOH) was mediated by rigid cross‐linkers, octa(3‐aminopropyl)octasilsesquioxane (POSS–NH3 +) and poly(amidoamine) dendrimer terminated with hydroxyl groups (PAMAM–OH), and a flexible polymeric linker, poly(hexanyl viologen) (6‐VP). Regular interparticle spacing was achieved by utilizing POSS–NH3 + and PAMAM–OH dendrimer as cross‐linkers, whereas size growth of Au–COOH was observed featuring no interparticle spacing by utilizing 6‐VP as the cross‐linker.  相似文献   

12.
Microwave plasmas at atmospheric pressure are used for surface treatments like for example cleaning, sterilization or decontamination purposes, for a pre‐treatment to increase the adhesion of lacquer, paint, or glue, and for the deposition of different kind of layers and coatings. Micro plasma jets can also be applied for biomedical applications and for treatment of small and complex geometries like for example the inside of capillaries. Larger plasma torches which exhibit higher gas temperatures can also be used for chemical syntheses like waste gas decomposition, methane pyrolysis, or carbon dioxide dissociation and for plasma spraying purposes. In the present publication an overview on the development and the investigation of the operating principle of two atmospheric pressure microwave plasma torches at frequencies of 2.45 GHz and 915 MHz will be presented. The plasma sources are based on a cylindrical resonator combined with coaxial structures. To explain how these plasma sources work, simulations of the electric field distribution will be discussed. Furthermore, some physical characteristics of an air and an Ar/H2 atmospheric plasma like gas temperatures, excitation temperatures and densities as well as the heating of the plasma by the microwave will be investigated. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Luminescence quenching of Ru(II) complexes by oxygen has proved a powerful method of quantitative oxygen analysis. It has become clear that the polymer support for the sensor molecule plays a pivotal role in the sensor performance. The current work is devoted to understanding how the physical and photophysical properties of a sensor respond to changes in polymer composition. An oxygen quenching study was conducted on [Ru(Ph2phen)3]Cl2(Ph2phen=4,7-diphenyl-1,10-phenanthroline), in copolymer supports consisting of GP-163 (a polydimethylsiloxane (PDMS) with varying amounts of pendant acrylate groups) combined with a number of alkyl methacrylates with long chain alkyl or fluorinated alkyl esters. Increasing the chain length or the degree of fluorination on the hydrocarbon chains enhances performance. However, there is an optimal chain length for the fluorinated hydrocarbons for sensitivity, linearity, and physical properties. Too long a chain yields reduced quenching sensitivity and yields cloudy polymers. All systems showed some degree of heterogeneity as indicated by nonlinear Stern-Volmer quenching plots, but their intensity quenching data could be successfully fit with a two-site model.  相似文献   

14.
Abstract

Thermal evaporation is commonly used for the production of optical coatings. The low packing density of thermally evaporated films implies optical constants and mechanical properties which are inferior to those of the bulk materials. For the investigations of the plasma IAD process we used a newly developed advanced plasma source (APS) with special features. The properties of dielectric layers deposited with plasma-IAD will be presented in comparison to conventional thermally evaporated films. In particular, the results of scratch resistant layers in combination with antireflection coatings on organic substrates will be shown.  相似文献   

15.
An amorphous acrylic acid (AA) polymer coating was generated on TiO2 nanoparticles through pulse radio frequency (RF) plasma polymerization. The AA plasma synthesis mechanism was studied by its optical emission spectrum. The chemical structures of AA–plasma‐polymer were carefully investigated by Fourier transform infrared spectroscopy (FTIR). The dispersion behaviors of AA‐coated and uncoated TiO2 nanoparticles in glycol solution were characterized by ultraviolet absorbency and particle size distribution measurements. The results showed that the aggregation of TiO2 nanoparticles in glycol solution was effectively lowered and the dispersion was improved a lot after AA–plasma‐polymer coating. The pulse plasma coating parameters played an important role in the dispersion enhancement of TiO2 nanoparticles. By properly regulating the pulse discharge parameters, the system could gain the highest radical–monomer reactions rate, the most compatible functional groups on the nanoparticles, and the best dispersion in the background media.  相似文献   

16.
Deuterium discharges in the PSI device have been modelled using the coupled package of the B2 hydrodynamic plasma code and the Eirene Monte‐Carlo neutral code. Radial and axial plasma profiles have been calculated for different magnetic field configurations, various radial diffusion laws and for different values of the flux limiter in the parallel electron heat conduction law used in the B2 code. The results are compared with experimental findings. The axial variation of the magnetic field strength is found to have an important influence on the plasma state via the axial plasma flow which closely resembles the neutral gas streaming through a series of laval nozzles. For particular magnetic field configurations, an appropriate ansatz for the parallel electron heat conduction turns out to be a crucial point for the applicability of hydrodynamic models to linear devices like the plasma generator PSI. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The effect of negative ions on the drift wave instability has been studied in detail in a linear device by means of Langmuir probes and cross‐correlation analysis. Drift waves are excited in low‐density (5 × 1014 m–3) and strongly magnetized (0.5 T) pure argon plasmas and in the presence of an oxygen admixture. The radial density profile of negative ions is hollow. For increasing concentration of negative ions the wave frequency decreases by about 25%. Despite of an axial density gradient, a global wave frequency is established for the entire column length. While for the noble gas case the drift wave frequency is given by the equilibrium plasma parameters in the mid‐plane, there is no such relationship for the argon plasma with oxygen admixture. This different finding is attributed to the inhomogeneous distribution of the negative ions (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Eight fluorinated nanoparticles (NPs) are synthesized, loaded with doxorubicin (DOX), and evaluated as theranostic delivery platforms to breast cancer cells. The multifunctional NPs are formed by self‐assembly of either linear or star‐shaped amphiphilic block copolymers, with fluorinated segments incorporated in the hydrophilic corona of the carrier. The sizes of the NPs confirm that small circular NPs are formed. The release kinetics data of the particles reveals clear hydrophobic core dependence, with longer sustained release from particles with larger hydrophobic cores, suggesting that the DOX release from these carriers can be tailored. Viability assays and flow cytometry evaluation of the ratios of apoptosis/necrosis indicate that the materials are non‐toxic to breast cancer cells before DOX loading; however, they are very efficient, similar to free DOX, at killing cancer cells after drug encapsulation. Both flow cytometry and confocal microscopy confirm the cellular uptake of NPs and DOX‐NPs into breast cancer cells, and in vitro 19F‐MRI measurement shows that the fluorinated NPs have strong imaging signals, qualifying them as a potential in vivo contrast agent for 19F‐MRI.  相似文献   

19.
The conductivity of silver and gold plasma is calculated within the relaxation‐time approximation at T ≥ 10 kK. The most accurate at present time momentum cross‐section for electron‐atom scattering was used. The ionic composition of plasma was calculated by means of generalized chemical model (GCM). The results of calculation were compared with the available data of others researchers (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The energy flux of an atmospheric‐pressure plasma jet for surface treatment has been investigated by a calorimetric probe. Generally, the investigations exhibit that the main contributions of the total energy influx from the plasma to the substrate surface originate from the neutrals regarding high gas temperature coupled with a high gas flow. The use of nitrogen as process gas shows a higher energy flux compared to oxygen and air presumably caused by increased gas temperature as well as by higher molecule formation and recombination energy of N2. Moreover, the lateral expansion of the plasma beam could be roughly determined by a spatially resolved analysis of the energy influx. A top part mounted on the nozzle, commonly used for the injection of additional precursor gases, showed a significant effect on the flow behavior and collision entailed relaxation of the excited plasma species leading to a restraining of the plasma jet. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号